Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres

  • Jamil K. Salem
  • Talaat M. Hammad
  • Roger R. Harrison
Article

Abstract

Ni doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Ni:Zn atomic ratio from 0 to 5 %. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and nickel acetate tetrahydrate followed by heat treatment at 65 °C under refluxing using methanol as a solvent. X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a wurtzite structure with crystal size of 4–11 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 600–170 nm. High resolution transmission electron microscopy image shows that each sphere is made up of numerous nanoparticles of average diameter 4 nm. The XRD patterns, Scanning electron microscopy and transmission electron microscopy micrographs of doping of Ni in ZnO are confirmed the formation of micro-spheres. Furthermore, the UV–vis. spectra and photoluminescence spectra of the Ni-doped ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.55–3.36 eV by the use of the dopants. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.

References

  1. 1.
    T.M. Hammad, J.K. Salem, R.G. Harrison, NANO 4, 225 (2009)CrossRefGoogle Scholar
  2. 2.
    J.K. Salem, T.M. Hammad, R.G. Harrison, Int. J. Nanosci. 8, 465 (2009)CrossRefGoogle Scholar
  3. 3.
    X.M. Sui, Y.C. Liu, C.L. Shao, Chem. Phys. Lett. 424, 340 (2006)CrossRefGoogle Scholar
  4. 4.
    X.F. Zhou, Z.L. Hu, Y. Chen, H.Y. Shang, Mater. Res. Bull. 43, 2790 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Pauporte, J. Rathousky, Micropor. Mesopor. Mater. 117, 380 (2009)CrossRefGoogle Scholar
  6. 6.
    T.M. Hammad, J.K. Salem, R.G. Harrison, Superlattices Microstruct. 47, 335 (2010)CrossRefGoogle Scholar
  7. 7.
    J.K. Salem, T.M. Hammad, J. Mater. Sci. Eng. 3, 38 (2009)Google Scholar
  8. 8.
    Y.S. Chen, T.Y. Tseng, J. Nanosci. Nanotechnol. 8(9), 4514 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Sato, H. Katayama-Yoshida, J. Appl. Phys. 39, 555 (2000)CrossRefGoogle Scholar
  10. 10.
    K. Sato, H. Katayama-Yoshida, J. Appl. Phys. 40, 334 (2001)CrossRefGoogle Scholar
  11. 11.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Korbecka, J.A. Majewski, Low Temp. Phys. 35, 53 (2009)CrossRefGoogle Scholar
  13. 13.
    J.H. Li, D.Z. Shen, J.Y. Zhang, D.X. Zhao, B.S. Li, Y.M. Lu, Y.C. Liu, X.W. Fan, J. Lumin. 122–123, 352 (2007)CrossRefGoogle Scholar
  14. 14.
    J.T. Prater, S. Ramachandran, A. Tiwari, J. Narayan, J. Electron. Mater. 35, 852 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)CrossRefGoogle Scholar
  16. 16.
    C.W. Cheng, G.Y. Xu, H.Q. Zhang, Y. Luo, Mater. Lett. 62, 1617 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Appl. Phys. A 90, 765 (2008)CrossRefGoogle Scholar
  18. 18.
    C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511 (2006)CrossRefGoogle Scholar
  19. 19.
    D.W. Wu, M. Yang, Z.B. Huang, G.F. Yin, X.M. Liao, Y.Q. Kang, X.F. Chen, H. Wang, J. Colloid Interface Sci. 330, 380 (2009)CrossRefGoogle Scholar
  20. 20.
    T.M. Hammad, J.K. Salem, J. Nanopar. Res. 13, 2205 (2011)CrossRefGoogle Scholar
  21. 21.
    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Deka, P.A. Joy, Chem. Mater. 17, 6507 (2005)CrossRefGoogle Scholar
  23. 23.
    K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420 (2002)CrossRefGoogle Scholar
  24. 24.
    C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19 (2006)CrossRefGoogle Scholar
  25. 25.
    Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Dai, Y. Zhang, Y.Q. Bai, Z.L. Wang, Chem. Phys. Lett. 375, 96 (2003)CrossRefGoogle Scholar
  27. 27.
    J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. Hou, Chem. Phys. Lett. 387, 466 (2004)CrossRefGoogle Scholar
  28. 28.
    S.M. Zhou, X.H. Zhang, X. Meng, K. Zou, X. Fan, S. Wu, S.T. Lee, Nanotechnology 15, 1152 (2004)CrossRefGoogle Scholar
  29. 29.
    P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Phan, R. He, H. Choi, Adv. Funct. Mater. 12, 323 (2002)CrossRefGoogle Scholar
  30. 30.
    Z.W. Zhao, B.K. Tay, J.S. Chen, J.F. Hu, B.C. Lim, G.P. Li, Appl. Phys. Lett. 90, 152502 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jamil K. Salem
    • 1
  • Talaat M. Hammad
    • 2
  • Roger R. Harrison
    • 3
  1. 1.Chemistry Department, Faculty of ScienceAl-Azhar UniversityGazaPalestine
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityGazaPalestine
  3. 3.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA

Personalised recommendations