Influence of TiO2 nanoparticles on thermal property, wettability and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 composite solder

  • Y. Tang
  • Y. C. Pan
  • G. Y. Li


The influence of TiO2 nanoparticles on thermal property, wettability, and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 (x = 0, 0.05, 0.1, and 0.6) lead-free composite solder was investigated in this study. Results show that the solidus temperatures of the TiO2-containing composite solder have no obvious change compared with TiO2-free solder. However, the liquidus temperatures of the TiO2-containing composite solders increase by 4.4 °C with an increase in amounts of TiO2 nanoparticles. The wetting angle of the composite solder decreases with the addition of TiO2 nanoparticles ranging from 0.05 to 0.1 wt%, while the spreading area increases. Based on the spherical cap model, the mathematical relation between the wetting angle and spreading area is analyzed. Scanning electron microscopy was used to observe the interfacial microstructure evolution of solder joints and to estimate the thickness of the intermetallic layer. Energy dispersive x-ray and x-ray diffractometry were used to identify the intermetallic compound (IMC) phases. Results reveal that both the thickness of IMCs and the size of Cu6Sn5 grains formed in the solder matrix decrease when TiO2 nanoparticles were added. It was also observed that some of the TiO2 nanoparticles are adsorbed on the surfaces of the scallop-like Cu6Sn5 grains. According to the adsorption theory, the surface energy of the Cu6Sn5 grains decreases with adsorption of TiO2 nanoparticles. Therefore, the diffusion of Sn and Cu atoms might be retarded, resulting in suppressing the growth of the IMCs layer.


Contact Angle Solder Joint TiO2 Nanoparticles Solder Ball Composite Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of this work from the Planned Science and Technology Project of Guangdong Province under the Project 2012B020313004 is gratefully acknowledged.


  1. 1.
    G.Y. Li, X.D. Bi, Q. Chen, X.Q. Shi, J. Electron. Mater. 40, 165 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, W. Dai, J.D. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010)CrossRefGoogle Scholar
  3. 3.
    X.P. Zhang, L.M. Yin, C.B. Yu, J. Mater. Sci.: Mater. Electron. 19, 393 (2008)CrossRefGoogle Scholar
  4. 4.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Des. 31, 4831 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci.: Mater. Electron. 23, 1108 (2012)CrossRefGoogle Scholar
  6. 6.
    G.Y. Li, B.L. Chen, J.N. Tey, IEEE Trans. Electron. Packag. Manuf. 27, 77 (2004)CrossRefGoogle Scholar
  7. 7.
    Z. Moser, P. Fima, K. Bukat, J. Sitek, J. Pstrus, W. Gasior, M. Koscielski, T. Gancarz, Solder. Surf. Mt. Tech. 23, 22 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska, A. Mlozniak, Solder. Surf. Mt. Technol. 23, 150 (2011)CrossRefGoogle Scholar
  9. 9.
    B.L. Chen, G.Y. Li, IEEE Trans. Compon. Packag. Technol. 28, 534 (2005)CrossRefGoogle Scholar
  10. 10.
    Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Materater, J. Mater. Sci.: Mater. Electron. 22, 315 (2011)CrossRefGoogle Scholar
  11. 11.
    X.L. Zhong, M. Gupta, Adv. Eng. Mater. 7, 1049 (2005)CrossRefGoogle Scholar
  12. 12.
    L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng., A 545, 194 (2012)CrossRefGoogle Scholar
  13. 13.
    L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci.: Mater. Electron. 23, 681 (2012)CrossRefGoogle Scholar
  14. 14.
    S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32, 4720 (2011)CrossRefGoogle Scholar
  15. 15.
    L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, Mater. Sci. Eng., A 441, 135 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Shen, Y.C. Chan, J. Alloys Compd. 477, 552 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Amagai, Microelectron. Reliab. 48, 1 (2008)CrossRefGoogle Scholar
  19. 19.
    D.C. Lin, G.X. Wang, T.S. Srivastna, M. Al-Hajri, M. Patraroli, Matter. Lett. 53, 333 (2002)CrossRefGoogle Scholar
  20. 20.
    D.C. Lin, S. Liu, T.M. Guo, G.X. Wang, T.S. Srivastna, M. Patraroli, Mater. Sci. Eng., A 360, 285 (2003)CrossRefGoogle Scholar
  21. 21.
    L. Zang, Z. Yuan, H. Xu, B. Xu, Appl. Surf. Sci. 257, 4877 (2011)CrossRefGoogle Scholar
  22. 22.
    X.R. Zhang, Z.F. Yuan, H.X. Zhao, L.K. Zang, J.Q. Li, Chinese Sci. Bull. 55, 797 (2010)CrossRefGoogle Scholar
  23. 23.
    L.C. Tsao, J. Alloys Compd. 509, 2326 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of InformationZhongkai University of Agriculture and EngineeringGuangzhouChina

Personalised recommendations