Thermal and electrical behavior of silver chloride/polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide

  • Sujata Vohra
  • Manish Kumar
  • Susheel K. Mittal
  • M. L. Singla


Nanocomposites of AgCl/PANI were synthesized by chemical polymerization/precipitation in aqueous HCl solution using both aniline monomer and AgNO3 precursors in different molar ratio in PVP. Silver ions interact with PVP which restrict the bulk growth of AgCl and keep it in nanosized. During synthesis, AgCl NPs got entrapped in PANI chains through inter-chain hydrogen bonding. TGA studies showed complete decomposition of polymer chains occurred at 30–40 °C higher temperature than PANI alone. DSC studies indicate higher thermal stability of the composite, which is due to more heat flow for decomposition of polymer chains indicating compact packing of polymer matrix with AgCl NPs having large surface area to volume ratio. The TEM image showed spherical NPs were randomly dispersed in a polymer matrix and from XRD data crystalline nature of composite was seen. In FT-IR spectrum strong absorption band of a carbonyl stretching group due to PVP indicates its presence on nanoparticle surface in composite. Thin films of nanocomposite were spin casted on ITO coated glass surface. Electrical conductance was calculated from I–V data which was found to be in the range of 10−2–10−7 S cm−1 depending on the concentration of NPs in it. These composites may find applications in solar cells as semiconductor material and for designing multiarray sensors for quality interpretation of beverages on the basis of their conductance changes using soft computing techniques.



The authors are highly thankful to Dr. Pawan Kapur, Director, Central Scientific Instruments Organization (CSIO), Chandigarh for permitting us to carry out this research work.


  1. 1.
    J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  2. 2.
    A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.H. Whangbol. Angew. Chem. Int. Ed. 47, 7931 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Tian, T. Tatsuma, Chem. Commun. 1810 (2004)Google Scholar
  6. 6.
    Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127, 2802 (2005)CrossRefGoogle Scholar
  7. 7.
    K. Matsubara, T. Tatsuma, Adv. Mater. 19, 2802 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Currao, V.R. Reddy, G. Galzaferri, Chem. Phys. Chem. 5, 720 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Qi, H. Colfen, M. Antonietti, Nano Lett. 1, 65 (2001)CrossRefGoogle Scholar
  10. 10.
    H. Zhao, E.P. Douglas, B.S. Harrison, K.S. Schanze, Langmiur 17, 8423 (2001)Google Scholar
  11. 11.
    Q. Wu, Z. Xue, Z. Qi, F. Wang, Polymer 41, 2029 (2000)CrossRefGoogle Scholar
  12. 12.
    F. Klasovsky, J. Hohmeyer, A. Brückner, M. Bonifer, J. Arras, M. Steffan, M. Lucas, J. Radnik, C. Roth, P. Claus, J. Phys. Chem. C 112, 19555 (2008)CrossRefGoogle Scholar
  13. 13.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Schurch, A. Currao, S. Sarkar, G. Hodes, G. Calzaferri, J. Phys. Chem. B 106, 12764 (2002)CrossRefGoogle Scholar
  15. 15.
    Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127, 7632 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Bai, Y. Li, M. Li, S. Wang, C. Zhang, Q. Yang, Appl. Surf. Sci. 254, 4520 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Zhang, Q. Liu, N. Zhan, Q. Yang, Y. Song, L. Sun, H. Wang, Y. Li, Colloids Surf. A 353, 64 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Sui, Y. Chu, S. Xing, C. Liu, Mater. Lett. 58, 1255 (2004)CrossRefGoogle Scholar
  19. 19.
    X. Feng, Y. Liu, C. Lu, W. Hou, J. Zhu, Nanotechnology 17, 3578 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Yan, X. Feng, X. Chen, X. Li, J. Zhu, Bioelectrochemistry 72, 21 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Yin, J. Yang, Macromol. Mater. Eng. 297, 203 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Ozdemir, F. Yeni, D. Odaci, S. Timur, Food Chem. 119, 380 (2010)CrossRefGoogle Scholar
  23. 23.
    Q. Zhang, F. Liu, L. Li, G. Pan, S. Shang, J. Nanopart. Res. 13, 415 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Zhou, M. Xie, X. Yuan, F. Zeng, W. Zou, D. Yuan, Am J Anal Chem 3, 385 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Majid, S. Awasthi, M.L. Singla, Sens. Actuators, A 135, 113 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Bai, Y. Li, L. Sun, C. Zhang, Q. Yang, Bull. Mater. Sci. 32, 161 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Borodko, S.M. Humphrey, T.D. Tilley, H. Frei, G.A. Somoraji, J. Phys. Chem. C 111, 6288–6295 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Marie, R. Rothe, M. Antonietti, K. Landfester, Macromolecules 36, 3967 (2003)CrossRefGoogle Scholar
  29. 29.
    R.-C. Wang, Z. Wang, M. Li, H. Li, Chem. Phys. Lett. 341, 431 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Drury, S. Chaure, M. Kroll, V. Nicolosi, N. Chaure, W.J. Blau, Chem. Mater. 19, 4252 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Wan, J. Li, J. Polym. Sci. A Polym. Chem. 38, 2359 (2000)CrossRefGoogle Scholar
  32. 32.
    G.C. Li, Z.K. Zhang, Macromolecules 37, 2683 (2004)CrossRefGoogle Scholar
  33. 33.
    E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. 23, 277 (1998)CrossRefGoogle Scholar
  34. 34.
    Y. Wei, G.W. Jang, K.F. Hsueh, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Polym. Mater. Sci. Eng. 61, 916 (1989)Google Scholar
  35. 35.
    S.A. Chen, H.T. Lee, Macromolecules 26, 1569 (1993)Google Scholar
  36. 36.
    M. Kumar, A. Phatak, M. Singh, M.L. Singla, Thin Solid Films 519, 1445 (2010)CrossRefGoogle Scholar
  37. 37.
    M.L. Singla, S. Awasthi, A. Srivastava, D.V.S. Jain, Sens. Actuators, A 136, 604 (2007)CrossRefGoogle Scholar
  38. 38.
    C. Chen-Ho, J. Appl. Polym. Sci. 89, 2142 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sujata Vohra
    • 1
    • 2
  • Manish Kumar
    • 1
  • Susheel K. Mittal
    • 2
  • M. L. Singla
    • 1
  1. 1.Material Research Division (Agrionics)CSIR-Central Scientific Instruments OrganisationChandigarhIndia
  2. 2.Thapar Institute of Engineering & Technology (TIET)PatialaIndia

Personalised recommendations