Structural and optical properties of Eu2O3 coated TiO2 nanoparticles and their application for dye sensitized solar cell

Article

Abstract

Specialized applications of dye sensitized solar cells (DSSCs) have attracted much attention as an economical substitute to first and second generation solar cells. Surface modification of TiO2 nanoparticles with high band gap Eu2O3 coating has been carried out by chemical precipitation arrested solvothermal method. The characterizations have been done through X-ray diffraction, transmission electron microscopy, diffuse UV–visible, and photoluminescence spectroscopy. Scanning electron microscopy results reveal an increase in surface roughness in case of Eu2O3/TiO2 electrode, which leads to enhancement in the dye loading capability. The synthesized nanoparticles have been employed for the fabrication of DSSCs. Effect of Eu2O3 coating on their performance has been studied. Eu2O3/TiO2 electrode provides better surface area for the dye adsorption, which slows down the electron–hole recombination, and thus, improves the DSSC performance. The photocurrent density–voltage (J–V) characteristics reveal that the efficiency of DSSCs fabricated from Eu2O3/TiO2 nanoparticles is 52 % higher than that from bare TiO2 nanoparticles.

Notes

Acknowledgments

The authors are grateful to the University Grants Commission (UGC) for the research funding vide sanction letter no. F. No. 39-533/2010 (SR) dated February 2011. One of the authors, Manveen Kaur is highly grateful to Thapar University, Patiala for providing the Teaching Associateship.

Conflict of interest

We hereby declare that we have no conflict of interest.

References

  1. 1.
    M. Grätzel, J. Photochem. Photobiol. A Chem. 164, 3 (2004)CrossRefGoogle Scholar
  2. 2.
    X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Mater. Sci. Mater. Electron. 23, 1373 (2012)Google Scholar
  3. 3.
    A. Zaban, S.G. Chen, S. Chappel, B.A. Gregg Chem. Commun. 2231 (2000)Google Scholar
  4. 4.
    M.H. Kim, Y.U. Kwon, J. Phys. Chem. C 113, 17176 (2009)CrossRefGoogle Scholar
  5. 5.
    S.S. Kim, J.H. Yum, Y.E. Sung, J. Photochem. Photobiol. A Chem. 171, 269 (2005)CrossRefGoogle Scholar
  6. 6.
    C. Lee, G.W. Lee, W. Kang, D.K. Lee, M.J. Ko, K. Kim, N.G. Park, Bull. Korean Chem. Soc. 31, 3093 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Lee, J.Y. Kim, S.H. Youn, M. Park, K.S. Hong, H.S. Jung, J.K. Lee, H. Shin, Langmuir 23, 11907 (2007)CrossRefGoogle Scholar
  8. 8.
    B.C. O’Regan, S. Scully, A.C. Mayer, E. Palomares, J. Durrant, J. Phys. Chem. B 109, 4616 (2005)CrossRefGoogle Scholar
  9. 9.
    P. Ghosh, A. Patra, Langmuir 22, 6321 (2006)CrossRefGoogle Scholar
  10. 10.
    L. Grinis, S. Dor, A. Ofir, A. Zaban, J. Photochem. Photobiol. A Chem. 198, 52 (2008)CrossRefGoogle Scholar
  11. 11.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 13, 5397 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Kitiyanan, S. Ngamsinlapasathian, S. Pavasupree, S. Yoshikawa, J. Solid State Chem. 178, 1044 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Liu, J. Li, A. Sedhain, J. Lin, H. Jiang, J. Phys. Chem. C 112, 17127 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Chaveanghong, S.M. Smith, J. Sudchanham, T. Amornsakchai, J. Microsc. Soc. Thail. 4, 36 (2011)Google Scholar
  15. 15.
    X. Song, L. Gao, Langmuir 23, 11850 (2007)CrossRefGoogle Scholar
  16. 16.
    X. Chen, Y. Hu, Y. Wang, J. Nanosci. Nanotechnol. 10, 1865 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Pal, U. Pal, J.M.G.Y. Jiménez, F.P. Rodríguez, Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  18. 18.
    K.V. Baiju, A. Zachariah, S. Shukla, S. Biju, M.L.P. Reddy, K.G.K. Warrier, Catal. Lett. 130, 130 (2009)CrossRefGoogle Scholar
  19. 19.
    D.B. Menzies, Q. Dai, L. Bourgeois, R.A. Caruso, Y.B. Cheng, G.P. Simon, L. Spiccia, Nanotechnology 18, 125608 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Nano Research Lab, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations