Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering

  • M. GulenEmail author
  • G. Yildirim
  • S. Bal
  • A. Varilci
  • I. Belenli
  • M. Oz


This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X–ray diffractometer (XRD), ultra violet-visible spectrometer (UV–vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In2O3 phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I 222/I 400 and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.


In2O3 Soda Lime Glass Interplaner Distance Atomic Force Microscopy Result Calculated Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Touskova, J. Kovanda, L. Dobiasova, V. Parizek, P. Kielar, Sol. Energ. Mat. Sol. C 37, 65 (1995)Google Scholar
  2. 2.
    I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engstrom, Vacuum 35, 9 (1985)CrossRefGoogle Scholar
  3. 3.
    A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.J. Haung, M. Kalin, D. Rudman, A.N. Tiwari, Prog. Photovolt. Res. Appl. 12, 93 (2004)CrossRefGoogle Scholar
  4. 4.
    H.M. Zeyada, M.M. El-Nahass, I.K. El-Zawawi, E.M. El-Menyawy, Eur. Phys. J. Appl. Phys. 49, 10301 (2010)CrossRefGoogle Scholar
  5. 5.
    S.K. Poznyak, A.N. Golubev, A.I. Kulak, Surf. Sci. 454, 396 (2000)CrossRefGoogle Scholar
  6. 6.
    D.G. Parker, P.G. Say, Electron. Lett. 22, 7 (1986)CrossRefGoogle Scholar
  7. 7.
    M.C. de Andrade, S. Moehlecke, Appl. Phys. A 58, 6 (1994)CrossRefGoogle Scholar
  8. 8.
    K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt. Res. Appl. 12, 69 (2004)CrossRefGoogle Scholar
  9. 9.
    R. Tueta, M. Braguier, Thin Solid Films 80, 8 (1981)CrossRefGoogle Scholar
  10. 10.
    T.J. Coutts, X. Li, M.W. Wanlass, K.A. Emery, T.A. Cessert, IEEE Electron Device Lett. 26, 660 (1990)Google Scholar
  11. 11.
    M. Masuda, K. Sakuma, E. Satoh, Y. Yamasaki, H. Miyasaka, J. Takeuchi, in Proc. 6th Int. Electron. Manuf. Technol. Symp.(1989), p. 95Google Scholar
  12. 12.
    E. Takeda, T. Kawaguchi, Y. Nanno, H. Tsutsu, T. Tamura, S. Ishihara, S. Nagata, in Proc. Int. Display Research Conf. (1988), p. 155 Google Scholar
  13. 13.
    P.P. Deimel, B.B. Heimhofer, G. Krotz, H.J. Lilienhof, J. Wind, G. Muller, E. Voges, IEEE Photon Technol. Lett. 2, 449 (1990)CrossRefGoogle Scholar
  14. 14.
    Y.S. Kim, Y.C. Park, S.G. Ansari, J.Y. Lee, B.S. Lee, H.S. Shin, Surf. Coat. Technol. 173, 299 (2003)CrossRefGoogle Scholar
  15. 15.
    M.S. Hwang, H.J. Lee, H.S. Jeong, Y.W. Seo, S.J. Kwon, Surf. Coat. Technol. 171, 29 (2002)CrossRefGoogle Scholar
  16. 16.
    S.H. Keshmiri, M. Rezaee-Roknabadi, S. Ashok, Thin Solid Films 413, 167 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, J. Vac. Sci. Technol. A 8, 1403 (1990)Google Scholar
  18. 18.
    I. Hamberg, C.G. Grangvist, J. Appl. Phys. 60, R123 (1986)CrossRefGoogle Scholar
  19. 19.
    A. Antony, M. Nisha, R. Manoj, M.K. Jayaraj, Appl. Surf. Sci. 225, 294 (2004)CrossRefGoogle Scholar
  20. 20.
    V. Senthilkumara, P. Vickramana, M. Jayachandran, C. Sanjeevirajac, Vacuum 84, 864 (2010)CrossRefGoogle Scholar
  21. 21.
    H.Y. Yeom, N. Popovich, E. Chason, D.C. Paine, Thin Solid Films 411, 17 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Morikawa, M. Fujita, Thin Solid Films 359, 61 (2000)CrossRefGoogle Scholar
  23. 23.
    M.J. Alam, D.C. Cameron, Thin Solid Films 420–421, 76 (2002)CrossRefGoogle Scholar
  24. 24.
    Y.S. Jung, Solid State Commun. 129, 491 (2004)CrossRefGoogle Scholar
  25. 25.
    F. Zhu, C.H.A. Huan, K.Z. Hang, A.T.S. Wee, Thin Solid Films 359, 244 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Nishio, T. Sei, T. Tsuchiya, J. Mater. Sci. 31, 1761 (1996)CrossRefGoogle Scholar
  27. 27.
    H.S. Kwok, X.W. Sun, D.H. Kim, Thin Solid Films 335, 299 (1998)CrossRefGoogle Scholar
  28. 28.
    H. Kim, A. Pique, J.S. Horwitz, Appl. Phys. Lett. 74, 344 (1999)CrossRefGoogle Scholar
  29. 29.
    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2139 (1998)CrossRefGoogle Scholar
  30. 30.
    G. Yildirim, S. Bal, and A. Varilci, J. Supercond. Nov. Magn. (2012). doi: 10.1007/s10948-012-1497-1
  31. 31.
    L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, Macromolecules 39, 3608 (2006)CrossRefGoogle Scholar
  32. 32.
    I. Zalakain, J.A. Ramos, R. Fernandez, H. Etxeberria, I. Mondragon, J. Appl. Polym. Sci. 25, 1552 (2012)CrossRefGoogle Scholar
  33. 33.
    W.V. Zoelen, E. Polushkin, G.T. Brinke, Macromolecules 41, 8807 (2008)CrossRefGoogle Scholar
  34. 34.
    J.H. Lee, J. Electroceram. 23, 554 (2009)CrossRefGoogle Scholar
  35. 35.
    C.W. Ow-Yang, D. Spinner, Y. Shigesato, D.C. Paine, J. Appl. Phys. 83, 45 (1998)CrossRefGoogle Scholar
  36. 36.
    P.K. Song, H. Akao, M. Kamei, Y. Shigesato, I.Y. Asui, Jpn. J. Appl. Phys. 38, 5224 (1999)CrossRefGoogle Scholar
  37. 37.
    N. Manavizadeh, A. Khodayari, E. Asl Soleimani, S. Bagherzadeh, Iran. J. Chem. Chem. Eng. 28, 57 (2009)Google Scholar
  38. 38.
    Y. Shigesato, D.C. Paine, Thin Solid Films 238, 44 (1994)CrossRefGoogle Scholar
  39. 39.
    E. Terzini, G. Nobile, S. Loreti, C. Minarini, T. Polichetti, P. Thilakan, Jpn. J. Appl. Phys. 38, 3448 (1999)CrossRefGoogle Scholar
  40. 40.
    A. Mohammadi Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, Mater. Sci. Eng. B 136, 37 (2007)CrossRefGoogle Scholar
  41. 41.
    C.V.R. Vassant Kumar, A. Mansingh, J. Appl. Phys. 65, 1270 (1989)CrossRefGoogle Scholar
  42. 42.
    C. Guillen, J. Herrero, Thin Solid Films 510, 260 (2006)CrossRefGoogle Scholar
  43. 43.
    L. Kerkach, A. Layadi, E. Dogheche, D. Remiens, J. Phys. D Appl. Phys. 39, 184 (2006)CrossRefGoogle Scholar
  44. 44.
    J. Ye, K. Nakamura, Phys. Rev. B 48, 7554 (1993)CrossRefGoogle Scholar
  45. 45.
    S. Shin, Mater. Res. Bull. 16, 299 (1981)CrossRefGoogle Scholar
  46. 46.
    W.F. Wu, B.S. Chiou, Thin Solid Films 293, 244 (1997)CrossRefGoogle Scholar
  47. 47.
    E. Fortunato, I. Ferreira, F. Giuliani, P. Wurmsdobler, R. Martins, J. Non-Cryst, Solids 1213, 266 (2000)Google Scholar
  48. 48.
    P. Thilakan, C. Minarini, S. Loreti, E. Terzini, Thin Solid Films 388, 34 (2001)CrossRefGoogle Scholar
  49. 49.
    D. Kim, Y. Han, J. S. Cho, S. K. Koh, Thin Solid Films 377/378, 81 (2000)Google Scholar
  50. 50.
    G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci Mater. Electron. (2011). doi: 10.1007/s10854-011-0522-7
  51. 51.
    J. Economy, R. Anderson, Inorg. Chem. 5, 989 (1966)CrossRefGoogle Scholar
  52. 52.
    S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. (2011). doi: 10.1007/s10948-011-1360-9
  53. 53.
    B.D. Cullity, Element of X-ray Diffraction, 3rd edn. (Addition-Wesley, Reading MA, 2001)Google Scholar
  54. 54.
    G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. (2011). doi: 10.1007/s10948-011-1324-0
  55. 55.
    G. Jayalakshmi, N. Gopalakrishnan, B.K. Panigrahi, T. Balasubramanian, Crst. Res. Technol. 12, 1257 (2011)CrossRefGoogle Scholar
  56. 56.
    B.L. Zhu, X.Z. Zhao, S. Xu, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, J. Liu, Jpn. J. Appl. Phys. 47, 2225 (2008)CrossRefGoogle Scholar
  57. 57.
    Gokcen M, Bal S, Yildirim G, Gulen M, Varilci A, J. Mater. Sci. Mater. Electron. (2012). doi: 10.1007/s10854-012-0690-0
  58. 58.
    G. Yildirim, S. Bal, M. Gulen, A. Varilci, E. Budak, M. Akdogan, Cryst. Res. Technol. 47, 195 (2012)CrossRefGoogle Scholar
  59. 59.
    G. Yildirim, M. Akdogan, A. Varilci, C. Terzioglu, Cryst. Res. Technol. 45, 1161 (2010)CrossRefGoogle Scholar
  60. 60.
    H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000)CrossRefGoogle Scholar
  61. 61.
    G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golonvanov, A. Cornet, J. Morante, A. Cabot, J. Arbiol, Thin Solid Films 406, 315 (2004)CrossRefGoogle Scholar
  62. 62.
    I.V. Tudose, P. Horvath, M. Suchea, S. Christoulakis, T. Kitsopoulos, G. Kiriakidis, J. Appl. Phys. 89, 57 (2007)CrossRefGoogle Scholar
  63. 63.
    H. Kim, C.M. Gilmore, J. Appl. Phys. 86, 6451 (1999)CrossRefGoogle Scholar
  64. 64.
    C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)CrossRefGoogle Scholar
  65. 65.
    R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, Thin Solid Films 346, 212 (1999)CrossRefGoogle Scholar
  66. 66.
    M.M. El-Nahass, E.M. El-Menyawy, Mater. Sci. Eng. B Adv. 177, 145 (2012)CrossRefGoogle Scholar
  67. 67.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  68. 68.
    J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976)CrossRefGoogle Scholar
  69. 69.
    W.W. Mobzen, J. Vac. Sci. Technol. 12, 99 (1975)CrossRefGoogle Scholar
  70. 70.
    J. Szczyrbowski, A. Dietrich, H. Hoffmann, Phys. Stat. Sol. A 78, 243 (1983)CrossRefGoogle Scholar
  71. 71.
    H.A. Macleod, J. Vac. Sci. Technol. A 4, 418 (1986)Google Scholar
  72. 72.
    W.L. Bragg, A.B. Pippard, Acta Crystallogr. 6, 865 (1953)CrossRefGoogle Scholar
  73. 73.
    B.E. Yoldas, P.W. Partlow, Thin Solid Films 129, 1 (1985)CrossRefGoogle Scholar
  74. 74.
    S.A. Kinckerbocker, A.K. Kulkarni, J. Vac. Sci. Technol. A 143, 757 (1996)Google Scholar
  75. 75.
    H.N. Cui, V. Teixeira, A. Monteiro, Vacuum 67, 589 (2002)CrossRefGoogle Scholar
  76. 76.
    J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover Publications Inc., New York, 1970)Google Scholar
  77. 77.
    Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Phys. Rev. B 64, 085421 (2001)CrossRefGoogle Scholar
  78. 78.
    G.L. Tian, H.B. He, J.D. Shao, Chin. Phys. Lett. 22, 1787 (2005)CrossRefGoogle Scholar
  79. 79.
    F.M. Liu, T.M. Wang, J.Q. Li, C. Wang, S.K. Zheng, M. Duan, J. Magn. Magn. Mater. 251, 245 (2002)CrossRefGoogle Scholar
  80. 80.
    Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Phys. Rev. Lett. 82, 5377 (1999)CrossRefGoogle Scholar
  81. 81.
    J.T. Jiu, F.M. Wang, M. Adachi, Mater. Lett. 58, 3915 (2004)CrossRefGoogle Scholar
  82. 82.
    J.F. Smith, A.J. Aronson, D. Chen, W.H. Class, Thin Solid Films 72, 469 (1980)CrossRefGoogle Scholar
  83. 83.
    M.J. Alam, D.C. Cameron, Thin Solid Films 377–378, 455 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Gulen
    • 1
    Email author
  • G. Yildirim
    • 1
  • S. Bal
    • 1
  • A. Varilci
    • 1
  • I. Belenli
    • 1
  • M. Oz
    • 2
  1. 1.Department of PhysicsAbant Izzet Baysal UniversityBoluTurkey
  2. 2.Department of ChemistryAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations