Advertisement

Observation of the solidification microstructure of Sn3.5Ag droplets prepared by CDCA technique

  • Jin Zhao
  • Yulai Gao
  • Weipeng Zhang
  • Tingting Song
  • Qijie Zhai
Article

Abstract

The Sn3.5Ag droplets in various sizes have been prepared by the consumable-electrode direct current arc technique. The cooling rates of the droplets have been evaluated based on Newton’s cooling law and it shows that the cooling rates of the droplets increase dramatically from 6.84 × 102 to 2.52 × 105 K/s as the droplet size decreases from 830 to 43 μm. The range of cooling rate is close to that of laser soldering (up to 104 K/s). It has been found that the β-Sn dendrites are refined as the cooling rate increase, and when the cooling rate is 1.30 × 105 K/s, which corresponding to the size scale smaller than 60 μm, the dendrites nearly disappear in the droplets. In addition, it has been observed that the high cooling rate could successfully avoid the precipitation of plate-like Ag3Sn and promote the formation of nanoparticles which are desirable in practical application. These nanoparticles uniformly distribute in the Sn matrix and the average size of nanoparticles in different droplets is 46.4 nm (in 380–830 μm droplets), 57.2 nm (in 150–250 μm droplets), 60.6 nm (in 96–150 μm droplets), 63.2 nm (in 43–60 μm droplets) and 65.3 nm (in droplets of <43 μm), respectively. According to the dispersion-strengthening effect, the existence of nanoparticles would be beneficial to improve the mechanical property of the Sn3.5Ag solder alloy.

Keywords

Cool Rate Solder Joint High Cool Rate Increase Cool Rate Alloy Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant Nos.: 50971086 and 51171105).

References

  1. 1.
    K. Suganuma, Curr. Opin. Solid. State. Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, W.M. Tang, G.Q. Xu et al., Mater. Chem. Phys. 122, 64 (2010)CrossRefGoogle Scholar
  4. 4.
    F. Ochoa, J. Williams, N. Chawla, JOM. 55, 56 (2003)CrossRefGoogle Scholar
  5. 5.
    I. Shohji, T. Yoshida, T. Takahashi et al., Mater. Sci. Eng. A 366, 50 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Tian, W. Liu, R. An et al., J. Mater. Sci. Mater. Electron. 23, 2 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Zou, Y. Gao, B. Yang et al., J. Mater. Sci. Mater. Electron. 23, 136 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Pietriková, J. Bednarcík, J. Durisin, J. Alloy. Compd. 509, 1550 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Saud, A. Jalar, J. Mater. Sci. Mater. Electron. 21, 1083 (2010)CrossRefGoogle Scholar
  10. 10.
    M.M. ElBahay, M.E. ElMossalamy, M. Mahdy et al., J. Mater. Sci. Mater. Electron. 15, 519 (2004)CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, D. Witkin, E.J. Lavernia, J. Non-Cryst. Solids 351, 1646 (2005)CrossRefGoogle Scholar
  12. 12.
    L.H. Kong, Y.L. Gao, T.T. Song et al., J. Magn. Magn. Mater. 323, 2165 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Zambon, B. Badan, G. Vedovato et al., Mater. Sci. Eng. A Struct. 304–306, 452 (2001)CrossRefGoogle Scholar
  14. 14.
    B. Yang, Y.L. Gao, C.D. Zou et al., Mater. Lett. 63, 2476 (2009)CrossRefGoogle Scholar
  15. 15.
    Q.J. Zhai, Y.L. Gao, W.B. Guan et al., Mater. Sci. Eng. A 441, 278 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Trivedi, F. Jin, I.E. Anderson, Acta Mater. 51, 289 (2003)CrossRefGoogle Scholar
  17. 17.
    W. Wang, Y. Lu, H. Qin et al., Sci. China Ser. G 52, 720 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Shen, Y. Liu, Y. Han et al., T. Nonferr. Metals Soc. 16, 59 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Kamal, E.S. Gouda, Mater. Manuf. Process. 21, 736 (2006)CrossRefGoogle Scholar
  20. 20.
    R. Kinyanjui, L. Lehman, L. Zavalij et al., J. Mater. Res. 20, 2914 (2005)CrossRefGoogle Scholar
  21. 21.
    R. Lai, K. Lin, B. Salam, J. Electron. Mater. 38, 88 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Kang, D.Y. Shih, D. Leonard et al., JOM. 56, 34 (2004)CrossRefGoogle Scholar
  23. 23.
    Z. Han, S. Xue, J. Wang et al., J. Electron. Packag. 131, 021004 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Tian, C. Wang, Y. Chen, J. Mater. Sci. Technol. 24, 220 (2008)CrossRefGoogle Scholar
  25. 25.
    Z.J. Han, S.B. Xue, J.X. Wang et al., T. Nonferr. Metals Soc. 18, 814 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Shen, Y. Liu, Y. Han et al., Rare Metals 25, 365 (2006)CrossRefGoogle Scholar
  27. 27.
    X.P. Zhang, C.B. Yu, Y.P. Zhang et al., J. Mater. Process. Tech. 192, 539 (2007)CrossRefGoogle Scholar
  28. 28.
    E.S. Lee, S. Ahn, Acta Metall. Mater. 42, 3231 (1994)CrossRefGoogle Scholar
  29. 29.
    M. Yang, Y. Dai, C. Song et al., J. Mater. Process Tech. 210, 351 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Zou, Y. Gao, B. Yang et al., J. Mater. Sci. Mater. Electron. 21, 868 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Yang, R. Messler, L. Felton, J. Electron. Mater. 23, 765 (1994)CrossRefGoogle Scholar
  32. 32.
    Q.G. Wang, C.H. Cáceres, Mater. Sci. Eng. A 234–236, 106 (1997)Google Scholar
  33. 33.
    W.R. Osório, A. Garcia, Mater. Sci. Eng. A 325, 103 (2002)CrossRefGoogle Scholar
  34. 34.
    F. Ochoa, J. Williams, N. Chawla, J. Electron. Mater 32, 1414 (2003)CrossRefGoogle Scholar
  35. 35.
    J.W. Hong, H.S. Kang, W.Y. Yoon et al., Mater. Sci. Eng. A 449–451, 727 (2007)Google Scholar
  36. 36.
    C. Wei, Y. Liu, Z. Gao et al., J. Electron. Mater. 38, 345 (2009)CrossRefGoogle Scholar
  37. 37.
    D.W. Hendersona, T. Gosselina, A. Sarkhela et al., J. Mater. Res. 17, 2775 (2002)CrossRefGoogle Scholar
  38. 38.
    Z.B. Luo, J. Zhao, Y.J. Gao et al., J. Alloy. Compd. 500, 39 (2010)CrossRefGoogle Scholar
  39. 39.
    D.Q. Yu, C.M.L. Wu, C.M.T. Law et al., J. Alloy. Compd. 392, 192 (2005)CrossRefGoogle Scholar
  40. 40.
    L. HwaTeng, C. YinFa, H. TingFu, et al., EPTC 875 (2009)Google Scholar
  41. 41.
    H.T. Lee, Y.F. Chen, J. Alloy. Compd. 509, 2510 (2011)CrossRefGoogle Scholar
  42. 42.
    F. Ochoa, X. Deng, N. Chawla, J. Electron. Mater. 33, 1596 (2004)CrossRefGoogle Scholar
  43. 43.
    M. Kerr, N. Chawla, Acta Mater. 52, 4527 (2004)CrossRefGoogle Scholar
  44. 44.
    K.S. Kim, S.H. Huh, K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002)CrossRefGoogle Scholar
  45. 45.
    F. Tai, F. Guo, Z. Xia et al., J. Electron. Mater. 34, 1357 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jin Zhao
    • 1
    • 2
  • Yulai Gao
    • 1
    • 2
  • Weipeng Zhang
    • 1
    • 2
  • Tingting Song
    • 1
    • 2
  • Qijie Zhai
    • 2
  1. 1.Laboratory for MicrostructuresShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations