Screen-printed single-walled carbon nanotube networks and their use for dimethyl methylphosphonate detection

Article
  • 317 Downloads

Abstract

Single-walled carbon nanotube (SWNT) films were prepared on silicon/silica substrates by screen-printed technique at a wafer scale, and their sensing properties to dimethyl methylphosphonate (DMMP) were studied. The SWNT networks were characterized by field-emission scanning electron microscope. The resistance responses to different concentrations of DMMP vapors were investigated at room temperature. The results showed that the resistance changes of the screen-printed SWNT films increased rapidly in varying concentrations ranging from 20 to 200 ppm. The sensor exhibited high resistance responses, good reproducibility and excellent long-term stability for DMMP vapor detection. The screen-printed SWNT networks would be potentially extended to large-scale, low cost and simple manufacturing sensor applications.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China via Grant Nos. 60736005 and 60876051, the Foundation for Innovation Groups of NSFC via No. 61021061, and the Program for New Century Excellent Talents in University via Grant no. NCET-08-0086. The authors would like to thank Chengdu Organic Chemicals Co. Ltd. of China and Yun Ye of Fuzhou University for help with the screen-printed SWNTs.

References

  1. 1.
    S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Environ. Toxicol. Pharmacol. 26, 113 (2008)CrossRefGoogle Scholar
  2. 2.
    K. Kuča, M. Pohanka, Mol. Clin. Environ. Toxicol. 100, 543 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Kassa, Clin. Toxicol. 40, 803 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Wang, H. Gu, T.M. Swager, J. Am. Chem. Soc. 130, 5392 (2008)CrossRefGoogle Scholar
  5. 5.
    D. Eder, Chem. Rev. 110, 1348 (2010)CrossRefGoogle Scholar
  6. 6.
    G.F. Malgas, C.J. Arendse, N.P. Cele, F.R. Cummings, J. Mater. Sci. 43, 1020 (2008)CrossRefGoogle Scholar
  7. 7.
    D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47, 6550 (2008)CrossRefGoogle Scholar
  8. 8.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)CrossRefGoogle Scholar
  9. 9.
    V. Krstic, G.S. Duesberg, J. Muster, M. Burghard, S. Roth, Chem. Mater. 10, 2338 (1998)CrossRefGoogle Scholar
  10. 10.
    H. Paloniemi, M. Lukkarinen, T. Aaritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka, J. Lukkari, Langmuir 22, 74 (2006)CrossRefGoogle Scholar
  11. 11.
    E.Y. Jang, T.J. Kang, H.W. Im, D.W. Kim, Y.H. Kim, Small 4, 2255 (2008)CrossRefGoogle Scholar
  12. 12.
    A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, M.S.P. Shaffer, Carbon 44, 3149 (2006)CrossRefGoogle Scholar
  13. 13.
    L. Hu, D.S. Hecht, G. Grüner, Chem. Rev. 110, 5790 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, Nanotechnology 20, 345502 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, E.S.-W. Kong, Y. Zhang, Sens. Actuators B 150, 708 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Wei, D. Shi, P. Ye, Z. Dai, H. Chen, C. Chen, J. Wang, L. Zhang, D. Xu, Z. Wang, Y. Zhang, Nanotechnology 22, 425501 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Cattanach, R.D. Kulkarni, M. Kozlov, S.K. Manohar, Nanotechnology 17, 4123 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Wang, M. Musameh, Analyst 129, 1 (2004)CrossRefGoogle Scholar
  19. 19.
    J.-H. Park, G.-H. Son, J.-S. Moon, J.-H. Han, A.S. Berdinsky, D.G. Kuvshinov, J.-B. Yoo, C.-Y. Park, J. Vac. Sci. Technol. B 23, 749 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Wang, Electroanalysis 17, 7 (2005)CrossRefGoogle Scholar
  21. 21.
    G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Biosens. Bioelectron. 20, 2140 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Sánchez, M. Pumera, E. Cabruja, E. Fàbregas, Analyst 132, 142 (2007)CrossRefGoogle Scholar
  23. 23.
    W.-J. Guan, Y. Li, Y.-Q. Chen, X.-B. Zhang, G.-Q. Hu, Biosens. Bioelectron. 21, 508 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Ye, H. Ju. Biosens. Bioelectron. 21, 735 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Sánchez, M. Pumera, E. Fàbregas, Biosens. Bioelectron. 23, 332 (2007)CrossRefGoogle Scholar
  26. 26.
    G. Li, H. Xu, W. Huang, Y. Wang, Y. Wu, R. Parajuli, Meas. Sci. Technol. 19, 065203 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Yu, Y.S. Zhang, F. Xu, Q. Li, Z.Q. Zhu, Q. Wan, Appl. Phys. Lett. 88, 153123 (2006)CrossRefGoogle Scholar
  28. 28.
    H.J. Lee, Y.D. Lee, S. Il Moon, W.S. Cho, Y.-H. Lee, J.K. Kim, S.W. Hwang, B.K. Ju, Carbon 44, 2625 (2006)CrossRefGoogle Scholar
  29. 29.
    H.J. Lee, Y.D. Lee, W.S. Cho, B.K. Ju, Y.-H. Lee, J.H. Han, J.K. Kim, Appl. Phys. Lett. 88, 093115 (2006)CrossRefGoogle Scholar
  30. 30.
    D.-H. Kim, C.-D. Kim, H.R. Lee, Carbon 42, 1807 (2004)CrossRefGoogle Scholar
  31. 31.
    E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Science 307, 1942 (2005)CrossRefGoogle Scholar
  32. 32.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)CrossRefGoogle Scholar
  33. 33.
    P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. Cho, Nano Lett. 3, 347 (2003)CrossRefGoogle Scholar
  34. 34.
    J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski, R.A. McGill, Appl. Phys. Lett. 83, 4026 (2003)CrossRefGoogle Scholar
  35. 35.
    E.S. Snow, J.P. Novak, P.M. Campbell, D. Park, Appl. Phys. Lett. 82, 2145 (2003)CrossRefGoogle Scholar
  36. 36.
    Q. Cao, J.A. Rogers, Adv. Mater. 21, 29 (2009)CrossRefGoogle Scholar
  37. 37.
    J.A. Robinson, E.S. Snow, S.C. Bădescu, T.L. Reinecke, F.K. Perkins, Nano Lett. 6, 1747 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC)ChengduPeople’s Republic of China

Personalised recommendations