Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications

  • N. V. KamaninaEmail author
  • S. V. Serov
  • N. A. Shurpo
  • S. V. Likhomanova
  • D. N. Timonin
  • P. V. Kuzhakov
  • N. N. Rozhkova
  • I. V. KitykEmail author
  • K. J. Plucinski
  • D. P. Uskokovic


Based on the model polyimide systems the principal nonlinear optical features, such as laser induced refractive indices changes, nonlinear refraction and third order susceptibility have been established during their doping with fullerenes, shungites, carbon nanotubes, carbon nanofibers, quantum dots, etc. The evidence of the correlation between laser induced refractive indices and charge carrier mobility has been obtained. The features of new nanocomposites for their possible optoelectronics, laser techniques and solar energy applications have been considered.


Fullerene Polyimide Carbon Nanofibers Charge Carrier Mobility Solar Energy Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thanks our colleagues Dr. V.E.Vaganov (Vladimir State University, VlSU, Vladimir, Russia), Dr.I.V.Mishakov (Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia), Dr.V.I.Studeonov and P.Ya.Vasilyev (Vavilov State Optical Institute, Saint-Petersburg, Russia) for their help and discussion. The results have been supported by RFBR grant #10-03-00916 and by Russian Federal Program, Project “Modulator with SEW” (2011). Partially the results have been shown at the YUCOMAT-2011 conference, Herceg-Novi, Montenegro, 2011.


  1. 1.
    M.A.G. Smith, G.R. Mitchell, S.V. O’Leary, J. Opt. A: Pure Appl. Opt. 4, 474–480 (2002)Google Scholar
  2. 2.
    I.C. Khoo, Y.Z. Williams, B. Lewis, T. Mallouk, Mol. Cryst. Liq. Cryst., 446, 233–244 (2006)Google Scholar
  3. 3.
    A.D. Grishina, L. Licea-Jimenez, L.Ya. Pereshivko, T.V. Krivenko, V.V. Savel’ev, R.W. Rychwalski, A.V. Vannikov, High Energy Chem., 40(5), 341–347 (2006)Google Scholar
  4. 4.
    T.V. Krivenko, L.Ya. Pereshivko, A.D. Grishina, V.V. Savel’ev, R.W. Rychwalski, A.V. Vannikov, Photoelectr High Energy Chem., 43(7), 540–542 (2009)Google Scholar
  5. 5.
    A. Denisov, J.-L. de Bougrenet de la Tocnaye, Appl. Opt. 48(10), 1926–1931 (2009)Google Scholar
  6. 6.
    N.V. Kamanina, V.N. Sizov, D.I. Stasel’ko, Opt. Spectrosc., 90(1), 1–3 (2001)Google Scholar
  7. 7.
    R.A. Ganeev, A.I. Ryasnuansky, N.V. Kamanina, I.A. Kulagin, M.K. Kodirov, T. Usmanov, J. Opt. B: Quantum Semiclassical Opt., 3(3), 88–92 (2001)Google Scholar
  8. 8.
    N.V. Kamanina, Physics-Uspekhi 48(4), 419–427 (2005)Google Scholar
  9. 9.
    N.V. Kamanina, D.P. Uskokovic, Mater. Manufact. Process., 23, 552–556 (2008)Google Scholar
  10. 10.
    N.V. Kamanina, A. Emandi, F. Kajzar, A.-J. Attias, Mol. Cryst. Liq. Cryst., 486, 1 = [1043]–11 = [1053] (2008)Google Scholar
  11. 11.
    N.V. Kamanina, A.I. Plekhanov, S.V. Serov, V.P. Savinov, P.A. Shalin, F. Kajzar, Nonlinear Opt. Quantum Opt., 40, 307–317 (2010)Google Scholar
  12. 12.
    N.V. Kamanina, N.A. Vasilenko, Opt. Quantum Electron., 29(1), 1–9 (1997)Google Scholar
  13. 13.
    N.V. Kamanina, P.Ya. Vasilyev, S.V. Serov, V.P. Savinov, K.Yu. Bogdanov, D.P. Uskokovic, Acta Phys. Polonica A 117(5), 786–790 (2010)Google Scholar
  14. 14.
    N.V. Kamanina, N.A.Shurpo, S.V.Likhomanova, D.N.Timonin, S.V.Serov, O.V.Barinov, P.Ya.Vasilyev, V.I.Studeonov, N.N.Rozhkova, V.E.Vaganov, I.V.Mishakov, A.A.Artukh, L.A.Chernozatonskii, Features of the nanostructured composites, in Proceedings of the tenth Israeli-Russian Bi-National Workshop 2011 “The Optimization of the Composition, Structure and Properties of Metals, Oxides, Composites, Nano- and Amorphous Materials”, Israel Academy of Science and Humanities and the Russian Academy of Science; 20 June–23 June, 2011, pp. 77–85Google Scholar
  15. 15.
    S.a. Akhmanov, S.Yu., Nikitin: Phys. Opt. Oxford (1997)Google Scholar
  16. 16.
    F. Gutman, L.E. Lyons, Organic Semiconductors (Wiley, New York, 1967)Google Scholar
  17. 17.
    M.M. Mikhailova, M.M. Kosyreva, N.V. Kamanina, On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett., 28(6), 450–453 (2002)Google Scholar
  18. 18.
    B. Sahraoui, I.V. Kityk, X. Nguyen Phu, P. Hudhomme, A. Gorgues, Phys. Rev. B.V, 59B:9229–9239 (1999)Google Scholar
  19. 19.
    I. Fuks-Janczarek, R. Miedzinski, E. Gondek, P. Szlachcic, I.V. Kityk. J. Mater. Sci. Mater. Electron., 19, 434–441 (2008)Google Scholar
  20. 20.
    M. Czerwinski, J. Bieleninik, J. Napieralski, I.V. Kityk, J. Kasperczyk, R.I. Mervinskii, Eur. Polymer J., 33(9), 1441–1447 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. V. Kamanina
    • 1
    Email author
  • S. V. Serov
    • 1
  • N. A. Shurpo
    • 1
  • S. V. Likhomanova
    • 1
  • D. N. Timonin
    • 1
  • P. V. Kuzhakov
    • 1
  • N. N. Rozhkova
    • 2
  • I. V. Kityk
    • 3
    Email author
  • K. J. Plucinski
    • 5
  • D. P. Uskokovic
    • 4
  1. 1.Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.Institute of Geology Karelian Research Centre Russian Academy of SciencesPetrozavodskRussia
  3. 3.Electrical Engineering DepartmentCzestochowa University TechnologyCzestochowaPoland
  4. 4.Institute of Technical Sciences of the SASABelgradeSerbia
  5. 5.Electronic DepartmentMilitary University TechnologyWarsawPoland

Personalised recommendations