Inducing multiferroic behaviour in the diamagnetic Y2O3 system

  • Venugopalan Anbarasu
  • Appasamy Manigandan
  • Thangavelu Karthik
  • Kandasamy Sivakumar


The synthesis and characterization of Y2−xFexO3 (where x = 0–0.3) compounds has been carried out for their importance in the field of multiferroic materials. The powder X-ray diffraction reveal that the compounds Y1.95Fe0.05O3, Y1.9Fe0.1O3, Y1.85Fe0.15O3 and Y1.8Fe0.2O3 crystallize in tetragonal structure whereas Y1.75Fe0.25O3 and Y1.7Fe0.3O3 compounds crystallize in orthorhombic structure. The change in crystal system with respect to the concentration of Fe may be attributed to the variation in occupancy position of Fe3+ into the Y3+ site of Y2O3 system. Variation in crystal structure, surface morphology and composition was studied by micro-Raman analysis, SEM and EDX analysis. The shift in intense Raman signals from 426 to 385 cm−1 confirms the change in the crystal structure of the prepared compounds. Further it is also identified that the Eg mode of vibration is the dominant in the Fe substituted compounds. The substitution of Fe in the Y2O3 system leads to the increase in the intensity of resonance band, which indicates a large polarisability variation in the Y2−xFexO3 compounds. Diffused reflectance studies show a red shift in energy gap values while increasing the concentration of Fe. The room temperature magnetization and electron paramagnetic resonance studies reveal that the incorporation of Fe in the Y2O3 system leads to magnetic phase change from diamagnetic to ferromagnetic. The electric polarization studies imply that the substitution of lower ionic radii element Fe3+ in the Y3+ site leads to distortion in the lattice and show the way to spontaneous dipole moment and it was found that the Y1.8Fe0.2O3 compound exhibits the possibility of multiferroic behaviour. Therefore this paper explores the possibility of inducing ferromagnetic and ferroelectric behaviour in the Fe substituted yttrium oxide system.


Y2O3 Electron Paramagnetic Resonance Spectrum BiFeO3 Yttrium Oxide Prepared Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.N. Bhowmik, M. Nrisimha Murty, E. Sekhar Srinadhu, Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3. PMC Phys. B 1, 1–18 (2008)CrossRefGoogle Scholar
  2. 2.
    G.A. Smolenskii, I.E. Chupis, Ferroelectromagnets. Sov. Phys. Uspekhi 25, 475–493 (1982)CrossRefGoogle Scholar
  3. 3.
    H. Schmid, Multiferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)CrossRefGoogle Scholar
  4. 4.
    L. Hongri, L. Zuli, L. Qing, Y. Kailun, Electric and magnetic properties of multiferroic (BiFeO3)1−x–(PbTiO3)x films prepared by the sol–gel process. J. Phys. D Appl. Phys. 39, 1022–1027 (2006)CrossRefGoogle Scholar
  5. 5.
    A. Moreira dos Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002)CrossRefGoogle Scholar
  6. 6.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003). (4 pages)CrossRefGoogle Scholar
  7. 7.
    I.A. Santos, L.F. Cotica, S.N. De Medeiros, A. Paesano Jr., A.A. Coelho, S. Gama, M.Z. Venet, D. Garcia, J.A. Eiras, Structural, microstructural and magnetic properties of the high-energy ball milled BiFeO3 and BiFe0.95Mn0.05O3 ferroelectromagnetic compounds. Ferroelectrics 338, 233–239 (2006)CrossRefGoogle Scholar
  8. 8.
    E. Hanamura, K. Hagita, Y. Tanabe, Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3. J. Phys. Condens. Matter 15, L103–L109 (2003)CrossRefGoogle Scholar
  9. 9.
    T. Katsufuji, S. Mori, Y. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi, Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001)CrossRefGoogle Scholar
  10. 10.
    L.F. Cotica, S.N. De Medeiros, I.A. Santos, A. Paesano Jr., E.J. Kinast, J.B.M. Da Cunha, M. Venet, D. Garcia, J.A. Eiras, Structural, magnetic, and dielectric investigations of the FeAlO3 multiferroic ceramics. Ferroelectrics 338, 241–246 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Shireen, R. Saha, P. Mandal, A. Sundaresan, C.N.R. Rao, Multiferroic and magnetodielectric properties of the Al1-xGaxFeO3 family of oxides. J. Mater. Chem. 21, 57–59 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Paik, H. Hwang, K. No, S. Kwon, D.P. Cann (2007) Room temperature multiferroic properties of single-phase, (Bi0.9La0.1)FeO3–Ba(Fe0.5Nb0.5)O3 solid solution ceramics. Appl. Phys. Lett. 90, 042908 (p 3)Google Scholar
  13. 13.
    A.Z. Simoes, L.S. Cavalcante, C.S. Riccardi, J.A. Varela, E. Longo, Ferroelectric and dielectric behaviour of Bi0.92La0.08FeO3 multiferroic thin films prepared by soft chemistry route. J. Sol-Gel. Sci. Technol. 44, 269–273 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Benfang, L. Meiya, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008). (4 pp)CrossRefGoogle Scholar
  15. 15.
    H.C. Hsu, C.D. Yang, W.Y. Tseng, H.C. Ku, Y.Y. Hsu, Magnetic and dielectric properties of multiferroic Tb0.5Eu0.5MnO3. J. Phys. Conf. Ser. 273, 012114 (2011). (p 4)Google Scholar
  16. 16.
    V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, A.L. Kholkin, Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008). (3 pp)CrossRefGoogle Scholar
  17. 17.
    A.A. Amirov, I.K. Kamilov, A.B. Batdalov, I.A. Verbenko, O.N. Razumovskaya, L.A. Reznichenko, L.A. Shilkina, Magnetoelectric Interactions in BiFeO3, Bi0.95Nd0.05FeO3 and Bi0.95La0.05FeO3 multiferroics. Tech. Phys. Lett. 34, 760–762 (2008)CrossRefGoogle Scholar
  18. 18.
    V. Anbarasu, A. Manigandan, S. Sathiyakumar, K. Kothandaraman, K. Jayabalan, Structural, electrical and magnetic studies on Y-Fe-O system. J. Rare Earths 27, 1013–1017 (2009)CrossRefGoogle Scholar
  19. 19.
    E. Suard, A. Maignan, V. Caignaert, B. Raveau, Effect of Y-Ca substitution upon superconductivity in the oxide YBa2Cu3-xCoxO7-δ. Physica C 200, 43–49 (1992)CrossRefGoogle Scholar
  20. 20.
    J. Tőpfer, J.B. Goodenough, LaMnO3+δ revisited. J. Solid State Chem. 130, 117–128 (1997)CrossRefGoogle Scholar
  21. 21.
    H.I. Adiguzel, M.A. Aksan, M.E. Yakinci, A study on the thermoelectric power and thermal conductivity properties of the Y1-xNdxBa2Cu3O7-δ system. J. Mater. Process. Technol. 207, 258–264 (2008)CrossRefGoogle Scholar
  22. 22.
    P.A. Tanner, K.L. Wong, Synthesis and spectroscopy of lanthanide ion-doped Y2O3. J. Phys. Chem. B 108, 136–142 (2004)CrossRefGoogle Scholar
  23. 23.
    Y. Repelin, C. Proust, E. Husson, J.M. Beny, Vibrational spectroscopy of the C-form of yttrium sesquioxide. J. Solid State Chem. 118, 163–169 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Ubaldini, M.M. Carnasciali, Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm and Lu), Sc2O3 and Y2O3. J. Alloys Compd. 454, 374–378 (2008)CrossRefGoogle Scholar
  25. 25.
    J.M. Calderon Moreno, M. Yoshimura, Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ion. 154–155, 125–133 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Torrent, V. Barron, Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci 1438–1446 (2002)Google Scholar
  27. 27.
    X. Cao, L. Gu, Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties. Nanotechnology 16, 180–185 (2005)CrossRefGoogle Scholar
  28. 28.
    O.M. Hemeda, A. El-Ati, Spectral studies of Co0.6Zn0.4Fe2O4 at different soaking times. Mater. Lett. 51, 42–47 (2001)CrossRefGoogle Scholar
  29. 29.
    R. Narkowicz, D. Suter, R. Stonies, Planar microresonators for EPR experiments. J. Magn. Reson. 175, 275–284 (2005)CrossRefGoogle Scholar
  30. 30.
    S.V. Demishev, A.V. Semeno, A.V. Bogach, Y.B. Paderno, N.Y. Shitsevalova, N.E. Shitsevalova, Antiferro-quadrupole resonance in CeB6. Physica B 378–380, 602–603 (2006)CrossRefGoogle Scholar
  31. 31.
    H. Zhou, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Magnetic resonance studies on ZnO nanocrystals. Microelectron. Eng. 66, 59–64 (2003)CrossRefGoogle Scholar
  32. 32.
    I. Coondoo, N. Panwar, A.K. Jha, Effect of sintering temperature on the structural, dielectric and ferroelectric properties of tungsten substituted SBT ceramics. Physica B 406, 374–381 (2011)CrossRefGoogle Scholar
  33. 33.
    K. Kamala Bharathi, G. Markandeyulu, Ferroelectric and ferromagnetic properties of Gd substituted nickel ferrite. J. Appl. Phys. 103, 07E309 (2008). (p 3)Google Scholar
  34. 34.
    K. Kamala Bharathi, J. Arout Chelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Jawahar, R.N.P. Choudhary, Structural, thermal and dielectric properties of La3/2Bi3/2Fe5O12. Solid State Commun. 142, 449–452 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Venugopalan Anbarasu
    • 1
  • Appasamy Manigandan
    • 1
  • Thangavelu Karthik
    • 2
  • Kandasamy Sivakumar
    • 1
  1. 1.Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology HyderabadYeddumailaramIndia

Personalised recommendations