Advertisement

Formation of CuInSe2 absorber by rapid thermal processing of electron-beam evaporated stacked elemental layers

  • Zhao-Hui Li
  • Eou-Sik Cho
  • Sang Jik KwonEmail author
  • Mario Dagenais
Article

Abstract

Copper indium diselenide (CuInSe2) film was formed using the rapid thermal process (RTP) of electron-beam (E-beam) evaporated Cu–In stacked elemental layers as an absorber layer for chalcopyrite solar cells. The E-beam evaporation method could accurately control the thickness of each elemental layer so that the chemical composition of Cu–In precursor could also be controlled by changing the thickness ratio of the Cu/In metal layer. The device-quality Cu-deficient CuInSe2 film was obtained when the thickness ratio of Cu/In was about 1/2.5. Otherwise, the RTP process time was also certified as one of the most important parameters of RTP when the temperature was over 550 °C. A single-phase CuInSe2 was successfully obtained after rapid thermal process under 580 °C for 3 min. Finally, the growth mechanism of CuInSe2 film during RTP process was also summarized.

Keywords

Thickness Ratio Elemental Layer Rapid Thermal Processing In4Se3 Cu2Se 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009454). This research was supported by the Kyungwon University Research Fund in 2011.

References

  1. 1.
    M.I. Alonso, K. Wakita, J. Pascual, M. Garriga, N. Yamamoto, Phys. Rev. B. 63, 075203 (2001)CrossRefGoogle Scholar
  2. 2.
    P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, G. Bilger, J.H. Werner, Prog. Photovolt. Res. Appl. 15, 507 (2007)CrossRefGoogle Scholar
  3. 3.
    L.L. Kazmermersi, S. Wanger, Current Topics in Photovoltaics (Academic Press, London, 1985)Google Scholar
  4. 4.
    D. Haneman, Crit. Rev. Solid State Mater. Sci. 14, 377 (1988)CrossRefGoogle Scholar
  5. 5.
    A. Rockett, R.W. Birkmire, J. Appl. Phys. 70, R81 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Rockett, M. Bodegard, M. Granath, L.K. Stolt, Proc. 25th IEEE Photov. Spec. Conf. (1996), pp. 985–987Google Scholar
  7. 7.
    U. Rau, H.W. Schock, Appl. Phys. A: Mater. Sci. Process 69, 131 (1999)CrossRefGoogle Scholar
  8. 8.
    W.N. Shafarman, J. Zhu, Thin Solid Films 361–362, 473 (2000)CrossRefGoogle Scholar
  9. 9.
    A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, Appl. Phys. Lett. 65, 198 (1994)CrossRefGoogle Scholar
  10. 10.
    F. Karg, V. Probst, H. Harms, J. Rimmasch, W. Riedl, J. Kotschy, J. Holt, R. Treichler, O. Eibl, A. Mitwalsky, A. Kiendl, Proc. 23rd IEEE Photov. Spec. Conf. (1993), pp. 441–446Google Scholar
  11. 11.
    G.D. Mooney, A.M. Hermann, J.R. Tuttle, D.S. Albin, R. Noufi, Appl. Phys. Lett. 58, 2678 (1991)CrossRefGoogle Scholar
  12. 12.
    A.M. Hermann, C. Gonzalez, P.A. Ramakrishnan, D. Balzar, N. Popa, P. Rice, C.H. Marshall, J.N. Hilfiker, T. Tiwald, P.J. Sebastian, M.E. Calixto, R.N. Bhattacharya, Sol. Energy Mater. Sol. Cells 70, 345 (2001)CrossRefGoogle Scholar
  13. 13.
    V. Alberts, M. Klenk, E. Bucher, Thin Solid Films 387, 44 (2001)CrossRefGoogle Scholar
  14. 14.
    L.X. Shao, K.H. Chang, T.H. Chung, B.H. Tseng, H.L. Hwang, J. Phys. Chem. Solids 64, 1505 (2003)CrossRefGoogle Scholar
  15. 15.
    W. Li, Y. Sun, W. Liu, L. Zhou, Sol. Energy 80, 191 (2006)CrossRefGoogle Scholar
  16. 16.
    V. Alberts, S. Zweigart, J.H. Schön, H.W. Schock, E. Bucher, Jpn. J. Appl. Phys. 36, 5033 (1997)CrossRefGoogle Scholar
  17. 17.
    S.C. Johannes, Dr. Thesis, University of Johannesburg, South Africa, 2009Google Scholar
  18. 18.
    B. Canava, J.F. Guillemoles, J. Vigneron, D. Lincot, A. Etcheberry, J. Phys. Chem. Solids 64, 1791 (2003)CrossRefGoogle Scholar
  19. 19.
    D. Schmid, M. Ruckh, F. Grunwald, H.W. Schock, J. Appl. Phys. 73, 2902 (1993)CrossRefGoogle Scholar
  20. 20.
    S. Verma, N. Orbey, R.W. Birkmire, T.W. Fraser Russell, Prog. Photovolt. Res. Appl. 4, 341 (1996)CrossRefGoogle Scholar
  21. 21.
    V. Alberts, M. Chenene, O. Schenker, E. Bucher, J. Mater. Sci. Mater. Electron. 11, 285 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Kim, W.K. Kim, R.M. Kaczynski, R.D. Acher, S. Yoon, T.J. Anderson, O.D. Crisalle, E.A. Payzant, S.S. Li, J. Vac. Sci. Technol. A 23, 310 (2005)CrossRefGoogle Scholar
  23. 23.
    F. Long, W.M. Wang, H.C. Tao, T.K. Jia, X.M. Li, Z.G. Zou, Z.Y. Fu, Mater. Lett. 64, 195 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhao-Hui Li
    • 1
  • Eou-Sik Cho
    • 1
  • Sang Jik Kwon
    • 1
    Email author
  • Mario Dagenais
    • 2
  1. 1.Department of Electronics EngineeringKyungwon UniversitySeongnamKorea
  2. 2.Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations