Advertisement

Effect of sintering process on electrical properties and ageing behavior of ZnO–V2O5–MnO2–Nb2O5 varistor ceramics

  • Choon-W. NahmEmail author
Article

Abstract

The effect of sintering process on microstructure, electrical properties, and ageing behavior of ZnO–V2O5–MnO2–Nb2O5 (ZVMN) varistor ceramics was investigated at 875–950 °C. The sintered density decreased from 5.52 to 5.44 g/cm3 and the average grain size increased from 4.4 to 9.6 μm with the increase of sintering temperature. The breakdown field (E1 mA) decreased from 6991 to 943 V/cm with the increase of sintering temperature. The ZVMN varistor ceramics sintered at 900 °C led to surprisingly high nonlinear coefficient (α = 50). The donor concentration (Nd) increased from 3.33 × 1017 cm−3 to 7.64 × 1017 cm−3 with the increase of sintering temperature and the barrier height (Φb) exhibited the maximum value (1.07 eV) at 900 °C. Concerning stability, the varistors sintered at 925 °C exhibited the most stable accelerated ageing characteristics, with %ΔE1 mA = 1.5% and %Δα = 13.3% for DC accelerated ageing stress of 0.85 E1 mA/85 °C/24 h.

Keywords

Sinter Temperature Barrier Height Leakage Current Sintered Density Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.W. Nahm, Solid. State. Commun. 149, 795 (2009)CrossRefGoogle Scholar
  2. 2.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  3. 3.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  4. 4.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  5. 5.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  6. 6.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  7. 7.
    H.-H. Hng, K.M. Knowles, J. Am. Ceram. Soc. 83, 2455 (2000)CrossRefGoogle Scholar
  8. 8.
    H.-H. Hng, P.L. Chan, Mater. Chem. Phys. 75, 61 (2002)CrossRefGoogle Scholar
  9. 9.
    H.-H. Hng, L. Halim, Mater. Lett. 57, 1411 (2003)CrossRefGoogle Scholar
  10. 10.
    C.-W. Nahm, J. Mater. Sci. 42, 8370 (2007)CrossRefGoogle Scholar
  11. 11.
    C.-W. Nahm, Ceram. Int. 35, 3435 (2010)CrossRefGoogle Scholar
  12. 12.
    C.-W. Nahm, J. Alloy. Compd. 490, L52 (2010)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nahm, Ceram. Int. 36, 1109 (2010)CrossRefGoogle Scholar
  14. 14.
    C.-W. Nahm, Mater. Lett. 64, 830 (2010)CrossRefGoogle Scholar
  15. 15.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 21, 540 (2010)CrossRefGoogle Scholar
  16. 16.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 22, 444 (2011)CrossRefGoogle Scholar
  17. 17.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  18. 18.
    M. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)CrossRefGoogle Scholar
  19. 19.
    J. Fan, R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994)CrossRefGoogle Scholar
  20. 20.
    M. F. Yan, A. H. Heuer, Additives and interfaces in electronic ceramics. Am. Ceram. Soc. Columbus OH 80, (1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations