Effects of addition of copper particles of different size to Sn-3.5Ag solder

  • Aemi Nadia
  • A. S. M. A. Haseeb


In this study, copper particles with different sizes 20–30 nm, 3 and 10 μm were incorporated into Sn-3.5Ag solder paste to form Sn–Ag–Cu composite solder. The Cu particles were added at 0.7 and 3% by paste mixing for 30 min. The composite solder samples were prepared on copper substrate at 240°C for 60 s. Differential scanning calorimetry was conducted to measure the melting point of the composite solder. The wetting angle and microstructure of the composite solder were studied using optical microscope and scanning electron microscope. Micro hardness was measured using a 10 gf load. It was reported that the lowest melting point was obtained at 216.3°C when Cu nanoparticles was added at 3% to Sn-3.5Ag. The microstructure of Sn-3.5Ag solder structure was dendritic in nature. With the addition of Cu nanoparticles, the microstructures were modified with more refined Sn structures. The existence of sunflower morphology of un-melted copper was observed when Cu microparticles were added.


Solder Alloy Lower Melting Temperature Composite Solder Bulk Solder Ag3Sn Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. 38(2), 55–105 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Pan, B.J. Toleno, T.C. Chou, W.J. Dee, Sold. Surf. Mount Technol. 18(4), 48–56 (2006)CrossRefGoogle Scholar
  3. 3.
    H. Hao, Y. Shi, Z. Xia, Y. Lei, F. Guo, J. Electron. Mater. 37(1), 1–8 (2008)CrossRefGoogle Scholar
  4. 4.
    K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29(10), 1122–1136 (2000)CrossRefGoogle Scholar
  5. 5.
    F. Guo, J Mater. Sci. Mater. Electron. 18(1–3), 129–145 (2007)Google Scholar
  6. 6.
    S.Y. Hwang, J.W. Lee, Z.H. Lee, J. Electron. Mater. 31(11), 1304–1308 (2002)CrossRefGoogle Scholar
  7. 7.
    D.C. Lin, T.S. Srivatsan, G.X. Wang, R. Kovacevic, Powder Technol. 166(1), 38–46 (2006)CrossRefGoogle Scholar
  8. 8.
    W.K. Choi, J.H. Kim, S.W. Jeong, H.M. Lee, J. Mater. Res. Soci. 17(1), 43–51 (2002)CrossRefGoogle Scholar
  9. 9.
    J.L. Marshall, J. Calderon, J. Sees, G. Lucey, J.S. Hwang, IEEE Trans. Compon. Hybrids Manuf. Technol. 14(4), 698–702 (1991)CrossRefGoogle Scholar
  10. 10.
    J.L. Marshall, J. Calderon, Solid Surf. Mount Technol. 26, 22–28 (1997)CrossRefGoogle Scholar
  11. 11.
    H.L. Lai, D.H. Guh, J. Electron. Mater. 32(4), 215–220 (2003)CrossRefGoogle Scholar
  12. 12.
    M. Amagai, Microelectron. Reliab. 48, 1–16 (2008)CrossRefGoogle Scholar
  13. 13.
    D.C. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajria, M. Petraroli, Mater. Lett. 57, 3193–3198 (2003)CrossRefGoogle Scholar
  14. 14.
    V. Sivasubramaniam, N.S. Bosco, J.J. Rusch, J. Cugnoni, J. Botsis, J. Electron. Mater. 37(10), 1598–1604 (2008)CrossRefGoogle Scholar
  15. 15.
    P. Yao, P. Liu, J. Liu, J. Alloys Compd 462(1–2), 73–79 (2008)CrossRefGoogle Scholar
  16. 16.
    Y.W. Wang, C.C. Chang, C.R. Kao, J. Alloys Compd. 478(1–2), L1–L4 (2009)Google Scholar
  17. 17.
    P. Jr. Scarber, G.M. Janowski, Modeling of Composites; Proceeding and Properties, Anaheim, CA, Mineral, Metal, Materials Society/AIME, 57–75 (1996)Google Scholar
  18. 18.
    J.G. Lee, F. Guo, K.N. Subramanian, J.P. Lucas, Solder. Surf. Mount Technol. 14(2), 11–17 (2002)CrossRefGoogle Scholar
  19. 19.
    F. Gao, S. Mukherjee, Q. Cui, Z. Gu, J. Phys. Chem. 113, 9546–9552 (2009)Google Scholar
  20. 20.
    B. Reddy, P. Bhattachary, B. Singh, Mater. Sci. Eng. 44(9), 2257–2263 (2008)Google Scholar
  21. 21.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49(3), 223–234 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Ochoa, J.J. Williams, N. Chawla, J. Miner. Metals Mater. Soci. 55(6), 56–60 (2003)Google Scholar
  23. 23.
    P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37(6), 874–879 (2008)CrossRefGoogle Scholar
  24. 24.
    D.C. Lin, T.S. Srivatsan, G.X. Wang, R. Kovacevic, J. Mater. Eng. Perform. 16(5), 647–654 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Bader, W. Gust, H. Hieber, Acta Metallurgica Et Materialia 43(1), 329–337 (1995)Google Scholar
  26. 26.
    L. Xu, J.H.L. Pang, K.H. Prakash, T.H. Low, IEEE Trans. Compon. Packag. Tech. 28(3), 408–414 (2005)CrossRefGoogle Scholar
  27. 27.
    K.H. Prakash, T. Sritharan, J. Electron. Mater. 32(9), 939–947 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity MalayaKuala LumpurMalaysia

Personalised recommendations