Advertisement

Dielectric properties and high-temperature dielectric relaxation of tungsten-bronze structure ceramics Ba2GdFeNbTa3O15

  • Zhao Yang
  • Liang Fang
  • Laijun Liu
  • Changzhen Hu
  • Xiuli Chen
  • Huanfu Zhou
Article

Abstract

Ba2GdFeNbTa3O15 was synthesized by a standard solid-state technique, which adopts a tetragonal filled tungsten bronze structure and exhibits paraelectric nature at room temperature. The dielectric temperature coefficient of Ba2GdFeNbTa3O15 at 1 MHz is 147 ppm °C . −1 AC impedance plots were used as tools to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The conduction is a thermally activated process with activation energy ~1.30 eV. The frequency-dependent maxima in the imaginary part of impedance are found to obey an Arrhenius law with activation energy ~1.34 eV. Such a value of activation energy suggests the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighboring sites within the crystalline lattice.

Keywords

Dielectric Relaxation Relaxation Frequency Dielectric Anomaly Debye Relaxation Precision Impedance Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 50962004, 51002036), Natural Science Foundation of Guangxi (Nos. 0832003Z, 0832001, C013002), ICDD Grant-in-Aid Program, and Programs for New Century Excellent Talents in Guangxi (No. 2006202). This work was also sponsored by Guangxi Key Lab for the Advanced Materials and New Processing Technology (0842003).

References

  1. 1.
    E.L. Ventiurini, E.G. Spencer, A.A. Balmann, J. Appl. Phys. 40, 1622 (1969)CrossRefGoogle Scholar
  2. 2.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Appl. Comps. 436, 226 (2007)Google Scholar
  3. 3.
    M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Muhll, O. Nguyen, M. Maglione, Solid State Sci. 11, 1118 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Li, L. Fang, X. Peng, C. Hu, Proc. IEEE ISAF 176, 354 (2009)Google Scholar
  5. 5.
    C. Hu, X. Peng, C. Li, L. Fang, L. Liu, Ferroelectrics 404, 33 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Fang, X. Peng, C. Li, C. Hu, B. Wu, H. Zhou, J. Am. Ceram. Soc. 93, 945 (2010)CrossRefGoogle Scholar
  7. 7.
    L. Fang, X. Peng, C. Li, C. Hu, B. Wu, H. Zhou, J. Am. Ceram. Soc. 93, 2430 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Fang, Z. Yang, H. Zhang, C. Li, X Peng, C. Hu,D. Chu, J. Mater Sci Mater Electron (2010). doi:  10.1007/s10854-010-0275-8
  9. 9.
    P.R. Das, R.N.P. Choudhary, B.K. Samantray, Mate. Chem. Phys. 101, 228 (2007)CrossRefGoogle Scholar
  10. 10.
    E. Atamanik, V. Thangadurai, Mater. Res. Bull. 44, 931 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Beltran, E. Cordoncillo, P. Escribano, D.C. Sinclair, A.R. West, J. Appl. Phys. 98, 094102 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Dutta, C. Bharti, T.P. Sinha, J. Appl. Phys. B 403, 3389 (2008)Google Scholar
  13. 13.
    Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu, X.Q. Liu, Appl. Phys. Lett. 90, 102905 (2007)CrossRefGoogle Scholar
  14. 14.
    I.P. Rajevskij, S.A. Prosandejev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhao Yang
    • 1
  • Liang Fang
    • 1
  • Laijun Liu
    • 1
  • Changzhen Hu
    • 1
  • Xiuli Chen
    • 1
  • Huanfu Zhou
    • 1
  1. 1.State Key Laboratory Breeding Base of Non-ferrous Metal and Characteristic Materials ProcessingGuilin University of TechnologyGuilinChina

Personalised recommendations