Advertisement

Effects of trace amounts of rare earth additions on the microstructures and interfacial reactions of Sn57Bi1Ag/Cu solder joints

  • Cuiping Wu
  • Jun Shen
  • Changfei Peng
Article

Abstract

The effects of trace amounts of rare earth (RE) additions on the melting property and microstructural evolution of SnBiAg/Cu solder joints were studied by differential scanning calorimetric test and microstructural observation. The results indicated that with the increase of RE additions, the solidus temperature decreased and the mushy temperature zone increased slightly in SnBiAg–xRE (x = 0.25, 0.5, 0.75 and 1.0) solder alloys. The microstructures of the Bi–rich dendrites in SnBiAg–xRE solder alloys were refined by the additions of minor RE elements. However, too many RE elements added into solder matrices led to the formation of large RE(Bi,Sn)3 intermetallic compound (IMC) which weakened the adsorption effect of RE elements on the Bi–rich dendrites. In addition, the thickness of the Cu6Sn5 IMC layers of SnBiAg–xRE/Cu solder joints were reduced remarkably due to the adsorption effect of RE elements at the interfaces of the Sn element and the Cu6Sn5 IMC layer.

Keywords

Rare Earth Solder Joint Solder Alloy Solidus Temperature Standard Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was financial supported by a Key Scientific and Technological Project of Chongqing (Project No. CSTC, 2009AC4046), a Natural Science Foundation Project of CQ CSTC (Project No. CSTC, 2010BB4039), Fundamental Research Funds for the Central Universities of P R China (Project No. CDJZR10130010), (Project No. CDJXS10131155) and (Project No. CDJZR11135501).

References

  1. 1.
    K.N. Tu, K. Zeng, Mater. Sci. Eng. R 34, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Abtewa, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  3. 3.
    W.P. Liu, N.C. Lee, JOM 59, 26 (2007)CrossRefGoogle Scholar
  4. 4.
    X.F. Li, F.Q. Zu, H.F. Ding et al., Phys. Lett. A 354, 325 (2006)CrossRefGoogle Scholar
  5. 5.
    J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907 (2006)CrossRefGoogle Scholar
  6. 6.
    K. Suganuma, Lead-free Soldering Technology, X. Ning (Trans.) (Beijing Science Press, 2002), p. 51Google Scholar
  7. 7.
    H.X. Jia, J.L. Huang, K.K. Zhang, J. Luoyang Inst Technol. 25, 11 (2004)Google Scholar
  8. 8.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R 44, 1 (2004)CrossRefGoogle Scholar
  9. 9.
    C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, J. Electron. Mater. 32, 63 (2003)CrossRefGoogle Scholar
  10. 10.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, J. Mater. Res. 31, 3146 (2002)CrossRefGoogle Scholar
  11. 11.
    Z.D. Xia, Z.G. Chen, Y.W. Shi, N. Mu, N. Sun, J. Electron. Mater. 31, 564 (2002)CrossRefGoogle Scholar
  12. 12.
    D.Q. Yu, J. Zhao, L. Wang, J. Alloys Compd. 376, 170 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.W. Shi, J. Tian, H. Hao, Z.D. Xia, Y.P. Lei, F. Guo, J. Alloys Compd. 453, 180 (2008)CrossRefGoogle Scholar
  14. 14.
    W.X. Dong, Y.W. Shi, Z.D. Xia, Y.P. Lei, F. Guo, J. Electron. Mater. 37, 982 (2008)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Shiue, T.H. Chuang, J. Alloys Compd. 491, 610 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Lyman, The Ninth Edition of Metals Handbook (ASM International, Ohio, 1985), p. 126Google Scholar
  17. 17.
    B. Huang, N.C. Lee, Int. Symp. Microelectron. Proc. 3906, 711 (1999)Google Scholar
  18. 18.
    T.B. Massalskl, Binary Alloy Phase Diagrams (ASM International, Ohio, 1990)Google Scholar
  19. 19.
    J. Zhou, Y. Sun, F. Xue, J. Alloys Compd. 397, 260 (2005)CrossRefGoogle Scholar
  20. 20.
    H.T. Lee, Y.F. Chen, J. Electron. Mater. 38, 10–2148 (2009)CrossRefGoogle Scholar
  21. 21.
    L.L. Gao, S.B. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S.L. Yu, G. Zeng, Microelectron. Eng. 87, 2025 (2010)CrossRefGoogle Scholar
  22. 22.
    Q.J. Zhai, S.K. Guan, Q.Y. Shang, Alloy Thermo–Mechanism: Theory and Application (Metallurgy Industry Press, Beijing, 1999), pp. 156–160Google Scholar
  23. 23.
    L. Ye, Z.H. Lai, J. Liu, A. Thölén, IEEN Trans. Electron. Packag. Manuf. 22, 228 (1999)CrossRefGoogle Scholar
  24. 24.
    B. Li, Y.W. Shi, Y.P. Lei, F. Guo, Z.D. Xia, B. Zong, J. Electron. Mater. 34, 217 (2005)CrossRefGoogle Scholar
  25. 25.
    X. Ma, Y.Y. Qian, F. Yoshida, J. Alloys Compd. 334(1), 224 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Ma, W.D. Wang, S.K. Lahiri, J. Appl. Phys. 91, 5–3312 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Material Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations