Dielectric property and electrical conduction mechanism of ZrO2–TiO2 composite thin films

  • Ming Dong
  • Hao Wang
  • Liangping Shen
  • Yun Ye
  • Cong Ye
  • Yi Wang
  • Jun Zhang
  • Yong Jiang
Article

Abstract

ZrO2–TiO2 composite films were fabricated by radio frequency magnetron sputtering and post annealing in O2. It was found the films remained amorphous below the annealing temperature of 500 °C. The as-deposited ZrO2–TiO2 film has a high dielectric constant of 22, and which increases to 34 after annealing at 400 °C. At low electric field, the dominant conduction mechanisms are Schottky emission for both the as-deposited and the annealed thin films. At high electric field, the conduction mechanism changes to space-charge-limited current and then changes to Poole–Frenkel (PF) emission after annealing at 400 °C.

References

  1. 1.
    B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy, R. Chau, Intel. Technol. J. 6, 42 (2002)Google Scholar
  2. 2.
    V.V. Afanas’ev, A. Stesmans, F. Chen, S.A. Campbell, R. Smith, Appl. Phys. Lett. 82, 922 (2003)CrossRefGoogle Scholar
  3. 3.
    V. Mikhelashvili, G. Eisenstein, A. Lahav, Appl. Phys. Lett. 90, 013506 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Wang, Y. Wang, J. Zhang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, Appl. Phys. Lett. 93, 202904 (2008)CrossRefGoogle Scholar
  5. 5.
    G. He, L.D. Zhang, M. Liu, J.P. Zhang, X.J. Wang, C.M. Zhen, J. Appl. Phys. 105, 014109 (2009)CrossRefGoogle Scholar
  6. 6.
    G.K. Dalapati, A. Sridhara, A.S.W. Wong, C.K. Chia, D.Z. Chi, Appl. Phys. Lett. 94, 073502 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, H. Wang, J. Zhang, H.B. Wang, C. Ye, Y. Jiang, Q. Wang, Appl. Phys. Lett. 95, 032905 (2009)CrossRefGoogle Scholar
  8. 8.
    J.P. Chang, Y.S. Lin, Appl. Phys. Lett. 79, 3666 (2001)CrossRefGoogle Scholar
  9. 9.
    F.C. Chiu, Z.H. Lin, C.W. Chang, C.C. Wang, K.F. Chuang, C.Y. Huang, J.Y. Lee, H.L. Hwang, J. Appl. Phys. 97, 034506 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Zhu, P. Chen, R.K.Y. Fu, W.L. Liu, C.L. Lin, P.K. Chu, Thin Solid Films 476, 312 (2005)CrossRefGoogle Scholar
  11. 11.
    Y.H. Wu, C.K. Kao, B.Y. Chen, Y.S. Lin, M.Y. Li, H.C. Wu, Appl. Phys. Lett. 93, 033511 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Tsoutsou, L. Lamagna, S.N. Volkos, A. Molle, S. Baldovino, S. Schamm, Appl. Phys. Lett. 94, 053504 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Manchanda, M.D. Morris, M.L. Green, R.B. van Dover, F. Klemens, T.W. Sorsch, P.J. Silverman, G. Wilk, B. Busch, S. Aravamudhan. Microelectron. Eng. 59, 351 (2001)CrossRefGoogle Scholar
  14. 14.
    S. Chatterjee, S.K. Samanta, H.D. Banerjee, C.K. Maiti, Thin Solid Film 422, 38 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Paskaleva, A.J. Bauer, M. Lemberger, S. Zürcher, J. Appl. Phys. 95, 5583 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Chen, X. Bin, C. Hella, X. Shi, W.L. Gladfelter, S.A. Campbel, Microelectron. Eng. 72, 263 (2004)CrossRefGoogle Scholar
  17. 17.
    V.V. Afanas’ev, A. Stesmans, F. Chen, M. Li, S.A. Campbell, J. Appl. Phys. 95, 7936 (2004)CrossRefGoogle Scholar
  18. 18.
    K. Honda, A. Sakai, M. Sakashita, H. Ikeda, S. Zaima, Y. Yasuda, Jpn. J. Appl. Phys. 43, 1571 (2004)CrossRefGoogle Scholar
  19. 19.
    C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B.Y. Wang, Y.C. Jin, J. Appl. Phys. 107, 104103 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Kim, J. Oh, B. Park, K.S. Hong, Appl. Phys. Lett. 76, 3043 (2000)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Y. Wang, J. Feng, C. Ye, B.Y. Wang, H.B. Wang, Q. Li, Y. Jiang, A.P. Huang, Z.S. Xiao, Appl. Phys. A. 93, 681 (2008)CrossRefGoogle Scholar
  22. 22.
    M.-H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, Appl. Phys. Lett. 81, 1071 (2002)CrossRefGoogle Scholar
  23. 23.
    L.M. Terman, Solid State Electron. 5, 285 (1962)CrossRefGoogle Scholar
  24. 24.
    M. Houssa, V.V. Afanas’ev, A. Stesmans, M.M. Heyns, Appl. Phys. Lett. 77, 1885 (2000)CrossRefGoogle Scholar
  25. 25.
    L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Mater. Sci. Semicond. Process. 9, 1125 (2006)CrossRefGoogle Scholar
  26. 26.
    R. Puthenkovilakam, M. Sawkar, J.P. Chang, Appl. Phys. Lett. 86, 202902 (2005)CrossRefGoogle Scholar
  27. 27.
    P.V. Aleskandrova, V.K. Gueorguiev, Tz.E. Ivanov, J.B. Koprinarova, Eur. Phys. J. B. 52, 453 (2006)CrossRefGoogle Scholar
  28. 28.
    M.T. Wang, T.H. Wang, J.Y. Lee, Microelectron. Reliab. 45, 969 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Ramanathan, C.M. Park, P.C. McIntyre, J. Appl. Phys. 91, 4521 (2002)CrossRefGoogle Scholar
  30. 30.
    F.C. Chiu, J. Appl. Phys. 100, 114102 (2006)CrossRefGoogle Scholar
  31. 31.
    S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istrarov, E.R. Weber, Phys. Rev. B. 61, 10361 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ming Dong
    • 1
  • Hao Wang
    • 2
  • Liangping Shen
    • 2
    • 3
  • Yun Ye
    • 2
  • Cong Ye
    • 2
  • Yi Wang
    • 2
  • Jun Zhang
    • 2
  • Yong Jiang
    • 4
  1. 1.State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical Engineering, Xi’an Jiaotong UniversityXi’anChina
  2. 2.Faculty of Physics and Electronic TechnologyHubei UniversityWuhanChina
  3. 3.College of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhanChina
  4. 4.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations