Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression

Article

Abstract

The Sn3.0Ag0.5Cu (wt%) lead-free solder alloy is considered to be one of the most promising alternatives to replace the traditionally used Sn–Pb solders. This alloy composition possesses, however, some weaknesses, mainly as a result of its higher melting temperature compared to the eutectic Sn–Pb solders. Nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy nanoparticles were prepared by chemical reduction with NaBH4 as a reducing agent at room temperature. The melting temperature of the synthesized Sn3.0Ag0.5Cu alloy nanoparticles was determined by differential scanning calorimetry (DSC). The results showed that the calorimetric onset melting temperature of the Sn3.0Ag0.5Cu alloy nanoparticles could be as low as 200 °C, which was about 17 °C lower than that of the bulk alloy (217 °C). The field emission scanning electron microscopy (SEM) images of the as-prepared nanoparticles indicated that the major particle size of Sn3.0Ag0.5Cu nanoparticles is smaller than 50 nm. The structure and morphology of the nanoparticles were analyzed with high resolution transmission electron microscopy (HRTEM). The Ag3Sn and Sn phase were observed in the HRTEM images, which was in good agreement with the XRD results. These low melting temperature Sn3.0Ag0.5Cu alloy nanoparticles show a potential to manufacture high quality lead-free solders for electronic products.

Notes

Acknowledgment

This work is supported by Science and Technology Commission of Shanghai Municipality (Grant no. 08520740500) and National Natural Science Foundation of China (Grant no. 50971086).

References

  1. 1.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  2. 2.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law et al., Mater. Sci. Eng. R 44, 1 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Ohnuma, M. Miyashita, K. Anzai et al., J. Electron. Mater. 29, 1137 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Kinyanjui, L.P. Lehman, L. Zavalij et al., J. Mater. Res. 20, 2914 (2005)CrossRefGoogle Scholar
  6. 6.
    S. Park, R. Dhakal, L. Lehman et al., Acta Mater. 55, 3253 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Mallik, N.N. Ekere, R. Durairaj et al., Mater. Design 30, 4502 (2009)CrossRefGoogle Scholar
  8. 8.
    Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Takagi, J. Phys. Soc. Jpn. 9, 359 (1954)CrossRefGoogle Scholar
  10. 10.
    T. Bachels, H.-J. Gutherodt, R. Schaer, Phys. Rev. Lett. 85, 1250 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Quaas, I. Shyjumon, R. Hippler, et al., Z. Kristallogr. Suppl 26, 267 (2007)Google Scholar
  12. 12.
    L. Wang, Y. Zhang, X. Bian et al., Phys. Lett. A 310, 197 (2003)CrossRefGoogle Scholar
  13. 13.
    J. Sun, S.L. Simon, Thermochim. Acta 463, 32 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Dippel, A. Maier, V. Gimple et al., Phys. Rev. Lett. 87, 095505 (2001)CrossRefGoogle Scholar
  15. 15.
    K.F. Peters, J.B. Cohen, Y.-W. Chung, Phys. Rev. B 57, 13430 (1998)CrossRefGoogle Scholar
  16. 16.
    P. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, S. Teitel, C. Dellago, Chem. Phys. Lett. 394, 257 (2004)CrossRefGoogle Scholar
  18. 18.
    E. Haro-Poniatowski, M. Jimenez De Castro, J. M. Fernandez Navarro, et al., Nanotechnology 18 (2007)Google Scholar
  19. 19.
    E.A. Olson, M.Y. Efremov, M. Zhang et al., J. Appl. Phys. 97, 034304 (2005)CrossRefGoogle Scholar
  20. 20.
    C.R.M. Wronski, Br. J. Appl. Phys. 18, 1731 (1967)CrossRefGoogle Scholar
  21. 21.
    G.L. Allen, R.A. Bayles, W.W. Gile et al., Thin Solid Films 144, 297 (1986)CrossRefGoogle Scholar
  22. 22.
    F.P. Kevin, C. Yip-Wah, B.C. Jerome, Appl. Phys. Lett. 71, 2391 (1997)CrossRefGoogle Scholar
  23. 23.
    S.L. Lai, G. Ramanath, L.H. Allen et al., Appl. Phys. Lett. 67, 1229 (1995)CrossRefGoogle Scholar
  24. 24.
    S.L. Lai, J.Y. Guo, V. Petrova et al., Phys. Rev. Lett. 77, 99 (1996)CrossRefGoogle Scholar
  25. 25.
    H.W. Sheng, K. Lu, E. Ma, Acta Mater. 46, 5195 (1998)CrossRefGoogle Scholar
  26. 26.
    H. Jiang, K.-S. Moon, H. Dong et al., Chem. Phys. Lett. 429, 492 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Manai, F. Delogu, Physica B 392, 288 (2007)CrossRefGoogle Scholar
  28. 28.
    E. Haro-Poniatowski, R. Serna, C.N. Afonso et al., Thin Solid Films 453–454, 467 (2004)CrossRefGoogle Scholar
  29. 29.
    W.A. Jesser, G.J. Shiflet, G.L. Allen et al., Mater. Res. Innov. 2, 211 (1999)CrossRefGoogle Scholar
  30. 30.
    C. Schamp, W. Jesser, Metall. Mater. Trans. A 37, 1825 (2006)CrossRefGoogle Scholar
  31. 31.
    W.A. Jesser, R.Z. Shneck, W.W. Gile, Phys. Rev. B 69, 144121 (2004)CrossRefGoogle Scholar
  32. 32.
    H. Jiang, K.S. Moon, F. Hua et al., Chem. Mater. 19, 4482 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Jiang, K.-S. Moon and C.P. Wong, in Electronic Components and Technology Conference, ECTC 08 (Florida, USA, 2008) p. 1400Google Scholar
  34. 34.
    L.Y. Hsiao, J.G. Duh, J. Electrochem. Soc. 152, J105 (2005)CrossRefGoogle Scholar
  35. 35.
    Y. Gao, C. Zou, B. Yang et al., J. Alloys Compd. 484, 777 (2009)CrossRefGoogle Scholar
  36. 36.
    P.R. Couchman, W.A. Jesser, Nature 269, 481 (1977)CrossRefGoogle Scholar
  37. 37.
    Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. Phys. 82, 225 (2003)CrossRefGoogle Scholar
  38. 38.
    W.H. Qi, M.P. Wang, Mater. Chem. Phys. 88, 280 (2004)CrossRefGoogle Scholar
  39. 39.
    C. Zou, Y. Gao, B. Yang et al., T. Nonferr. Metal. Soc. 20, 248 (2010)CrossRefGoogle Scholar
  40. 40.
    R. Fisker, J.M. Carstensen, M.F. Hansen et al., J. Nanopart. Res. 2, 267 (2000)CrossRefGoogle Scholar
  41. 41.
    E. Muthuswamy, S. Ramadevi, H.N. Vasan et al., J. Nanopart. Res. 9, 561 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Muñoz, J. Cervantes, R. Esparza et al., J. Nanopart. Res. 9, 945 (2007)CrossRefGoogle Scholar
  43. 43.
    A. Corrias, G. Ennas, G. Licheri et al., Chem. Mater. 2, 363 (1990)CrossRefGoogle Scholar
  44. 44.
    D. Zeng, M.J. Hampden-Smith, Chem. Mater. 5, 681 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Changdong Zou
    • 1
  • Yulai Gao
    • 1
  • Bin Yang
    • 1
  • Qijie Zhai
    • 1
  1. 1.Shanghai Key Laboratory of Modern Metallurgy & Materials ProcessingShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations