Advertisement

Effect of Dy2O3 addition on microstructure, electrical properties, and aging behavior of ZnO–V2O5–MnO2–CoO varistor ceramics

  • Choon-W. NahmEmail author
Article

Abstract

The microstructure, electrical properties, and aging behavior of ZnO–V2O5–MnO2–CoO–Dy2O3 varistor ceramics were investigated for different contents of Dy2O3. The microstructure consisted of ZnO grain as a main phase and secondary phases such as Zn3(VO4)2, ZnV2O4, and DyVO4. The average grain size increased from 7.6 to 10.1 μm and the sintered density slightly increased from 5.53 to 5.57 g/cm3 with the increase of Dy2O3 content. The varistor ceramics added with 0.05 mol% Dy2O3 exhibited the most nonlinear properties, with nonlinear coefficient of 30, and the highest stability against DC-accelerated aging stress. The Dy2O3 acted as an acceptor due to the decrease of donor density in the range of 2.73 × 1018/cm3 to 1.28 × 1018/cm3.

Keywords

MnO2 Leakage Current Density Sintered Density Dy2O3 Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.-W. Nahm, Ceram. Int. 35, 541 (2009)CrossRefGoogle Scholar
  2. 2.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  3. 3.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  4. 4.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  5. 5.
    C.-W. Nahm, J. Mater. Sci. Lett. 21, 201 (2002)CrossRefGoogle Scholar
  6. 6.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  7. 7.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  8. 8.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  9. 9.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2949 (1998)CrossRefGoogle Scholar
  10. 10.
    C.-S. Chen, J. Mater. Sci. 38, 1033 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Pfeiffer, K.M. Knowles, J. Eur. Ceram. Soc. 24, 1199 (2004)CrossRefGoogle Scholar
  12. 12.
    C.-W. Nahm, J. Mater. Sci. 42, 8370 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Zhao, X.C. Liu, W.M. Wang, F. Gao, C.S. Tian, Ceram. Int. 34, 1425 (2008)CrossRefGoogle Scholar
  14. 14.
    C.-W. Nahm, Ceram. Int. 35, 2679 (2009)CrossRefGoogle Scholar
  15. 15.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  16. 16.
    M. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)CrossRefGoogle Scholar
  17. 17.
    C.-W. Nahm, B.-C. Shin, B.-H. Min, Mater. Chem. Phys. 82, 157 (2003)CrossRefGoogle Scholar
  18. 18.
    C.-W. Nahm, J.-A. Park, B.-C. Shin, I.-S. Kim, Ceram. Int. 30, 1009 (2004)CrossRefGoogle Scholar
  19. 19.
    C.-W. Nahm, J. Eur. Ceram. Soc. 21, 545 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanRepublic of Korea

Personalised recommendations