Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1501–1508 | Cite as

Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors

  • O. Ozturk
  • H. A. Cetinkara
  • E. Asikuzun
  • M. Akdogan
  • M. Yilmazlar
  • C. TerziogluEmail author
Article

Abstract

The mechanical and superconducting properties of the Fe diffusion-doped (Bi-Pb)-2223 superconductor have been investigated. First, iron was evaporated on Bi-2223 superconductor and then the Fe layered superconductor was annealed at 830 °C for 10, 30 and 60 h. Static Vickers hardness, dc electrical resistivity, X-ray diffraction and scanning electron microcopy have been carried out to assess the effects of Fe doping. These measurements indicates that Fe doping, in comparison with the undoped samples, increased the critical transition temperature, and improved formation of high T c phase, while decreasing the number and size of voids. Moreover, both microhardness and grain size were also enhanced by increasing the amount of diffusion. The values of microhardness were found to be load dependent. In addition, we have investigated the indentation size effect (ISE) behavior using some models such as the Kick’s law, modified proportional specimen resistance (MPRS) model and the Hays- Kendall (HK) approach. Among them, both HK and MPRS models are successful. In this study, the possible reasons of noticed improvement on mechanical and physical properties due to iron diffusion are discussed.

Keywords

Vickers Microhardness Undoped Sample Indentation Load Indentation Size Effect Iron Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported partly by The Scientific and Technological Council of Turkey (Project No: 104T325) and partly by the Turkish State Planning Organization (DPT) (Project No: 2004K120200).

References

  1. 1.
    L. Pierre, J. Schneck, D. Morin, J.C. Toledona, J. Primot, C. Daguet, H. Savary, J. Appl. Phys. 68, 2296 (1990)CrossRefGoogle Scholar
  2. 2.
    R.K. Nkum, W.R. Datars, Physica C 190, 465 (1992)CrossRefGoogle Scholar
  3. 3.
    K. Nanda Kishore, M. Muralidhar, V. Hari Babu, Physica C 204, 299 (1993)CrossRefGoogle Scholar
  4. 4.
    S. Kambe, Y.C. Guo, S.X. Dou, H.K. Liu, Y. Wakahara, H. Maeda, K. Kakimoto, M. Yavuz, Supercond. Sci. Technol. 11, 1061 (1998)CrossRefGoogle Scholar
  5. 5.
    C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 119 (2005)CrossRefGoogle Scholar
  6. 6.
    V.G. Prabitha, A. Biju, R.G. Abhilash Kumar, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, Physica C 433, 28 (2005)CrossRefGoogle Scholar
  7. 7.
    C. Terzioglu, O. Ozturk, A. Kilic, A. Gencer, I. Belenli, Physica C 434, 153 (2006)CrossRefGoogle Scholar
  8. 8.
    J.W. Ko, J.M. Yoo, Y.K. Kim, K.H. Oh, S.J. Choe, H. Chung, Cryogenics 43, 549–553 (2003)CrossRefGoogle Scholar
  9. 9.
    B. Zhao, X. Wan, W. Song, Y. Sun, J. Du, Physica C 337, 138–144 (2000)CrossRefGoogle Scholar
  10. 10.
    S.E. Babcock, Micron 30, 449–461 (1999)CrossRefGoogle Scholar
  11. 11.
    J.D. Hettinger, K.E. Gray, D.J. Miller, D.H. Kim, D.G. Steel, B.R. Washburn, J. Sharping, C. Moreau, M. Eddy, J.E. Tkaczyk, J. Deluca, J.H. Kang, J. Talvacchio, Physica C 273, 275–280 (1997)CrossRefGoogle Scholar
  12. 12.
    J. Mannhart, H. Bielefeldt, B. Goetz, H. Hilgenkamp, A. Schmehl, C.W. Schneider, R.R. Schulz, Physica C 341–348, 1393–1396 (2000)CrossRefGoogle Scholar
  13. 13.
    A. Murakami, K. Katagirib et al., Physica C 392–396, 557–561 (2003)CrossRefGoogle Scholar
  14. 14.
    U. Kölemen, O. Uzun, M. Yılmazlar, N. Güçlü, E. Yanmaz, J. Alloy. Compd. 415, 300–306 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Nursoy, M. Yilmazlar, C. Terzioglu, I. Belenli, J. Alloy. Compd. 459(1–2), 399 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Yilmazlar, H.A. Cetinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C 442, 101 (2006)CrossRefGoogle Scholar
  17. 17.
    S.M. Khalil, Smart Mater. Struct. 14, 804 (2005)CrossRefGoogle Scholar
  18. 18.
    S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Murakami, K. Katagiri, K. Noto, K. Kasaba, Y. Sohoji, M. Muralidhar, N. Sakai, M. Murakami, Physica C 378–381, 794 (2002)CrossRefGoogle Scholar
  20. 20.
    K. Katagiri, A. Murakami, R. Kan, K. Kasaba, K. Noto, M. Muralidhar, N. Sakai, M. Murakami, Physica C 392–396, 526 (2002)Google Scholar
  21. 21.
    E. Bruneel, J. Degrieck, I. Van Driessche, S. Hoste, Physica C 372–376, 1063 (2002)CrossRefGoogle Scholar
  22. 22.
    C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature 365, 323 (1993)CrossRefGoogle Scholar
  23. 23.
    S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys. 61, 251 (1999)CrossRefGoogle Scholar
  24. 24.
    B.W. Mott, Microindentation Hardness Testing, vol. 9 (Butterworths, London, 1956)Google Scholar
  25. 25.
    Y.C. Chen, K.K. Chong, T.H. Meen, Jpn. J. Appl. Phys. 30, L33 (1991)CrossRefGoogle Scholar
  26. 26.
    K.H. Yoon, Y.B. Lee, J. Mate Sci. 26, 5101 (1991)CrossRefGoogle Scholar
  27. 27.
    P. Kameli, H. Salamati, M. Eslami, Solid State Commun. 137, 30–35 (2006)CrossRefGoogle Scholar
  28. 28.
    O. Ozturk, T. Kucukomeroglu, C. Terzioglu, J. Phys. Condens. Matter 19, 346205 (2007). (10 pp)CrossRefGoogle Scholar
  29. 29.
    C. Terzioglu, O. Ozturk, I. Belenli, J. Alloy. Compd. 471, 142–146 (2009)CrossRefGoogle Scholar
  30. 30.
    H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988)CrossRefGoogle Scholar
  31. 31.
    J. Gong, J. Wu, Z. Guan, Mater. Lett. 38, 197 (1999)CrossRefGoogle Scholar
  32. 32.
    K. Sangwal, B. Surowska, Mater. Res. Innov. 7, 91 (2003)Google Scholar
  33. 33.
    R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 42, 446 (2003)CrossRefGoogle Scholar
  34. 34.
    A.A. Elmustafa, D.S. Stone, J Mech Phys Solid 51, 357 (2003)CrossRefGoogle Scholar
  35. 35.
    O. Ozturk, C. Terzioglu, I. Belenli, J. Supercond, Nov Magn. (2010). doi:  10.1007/s10948-010-0998-z
  36. 36.
    F. Fröhlinch, P. Grau, W. Grellmann, Phys. Status Solidi 42, 79 (1997)Google Scholar
  37. 37.
    H. Li, R.C. Bradt, J. Mater. Sci. 22, 917 (1993)CrossRefGoogle Scholar
  38. 38.
    C. Hays, E.G. Kendall, Metallography 6(4), 275 (1973)CrossRefGoogle Scholar
  39. 39.
    J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19, 2625 (1999)CrossRefGoogle Scholar
  40. 40.
    J.B. Quinn, G.D. Quinn, J. Mater. Sci. 32, 4331 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • O. Ozturk
    • 1
  • H. A. Cetinkara
    • 2
  • E. Asikuzun
    • 1
  • M. Akdogan
    • 3
  • M. Yilmazlar
    • 4
  • C. Terzioglu
    • 3
    Email author
  1. 1.Department of Physics, Faculty of Arts and ScienceKastamonu UniversityKastamonuTurkey
  2. 2.Department of Physics, Faculty of Arts and ScienceMustafa Kemal UniversityHatayTurkey
  3. 3.Department of Physics, Faculty of Arts and ScienceAbant Izzet Baysal UniversityBoluTurkey
  4. 4.Faculty of EducationSakarya UniversityHendek, SakaryaTurkey

Personalised recommendations