Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1400–1403 | Cite as

Effects of cobalt doping on the electrical properties of MBE-grown ZnO

  • D. Seghier
  • H. P. Gislason
Article

Abstract

We investigated n-conducting Co-doped ZnO epilayers grown by MBE with a cobalt content of nominal 4, 12, and 18 at.% by means of deep level transient spectroscopy (DLTS) and resistivity measurements. We found that in materials grown at the same substrate temperature, 500 °C, the resistivity decreases with the cobalt mole fraction. The free electron concentration accounts for most of the change in the resistivity. The DLTS measurements reveal the presence of a defect center located at Ec−0.5 eV, which is (1) metastable; (2) sensitive to annealing in oxygen-free ambient, and (3) decreasing in density in the samples with higher cobalt content. We therefore assign the center to the isolated oxygen vacancy. Furthermore, our results support the hypothesis that ferromagnetism in ZnO:Co is mediated by Co-oxygen vacancy pairs.

Keywords

Deep Level Transient Spectroscopy Cobalt Content Drift Mobility Free Electron Density Free Electron Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by the Icelandic Research Fund and University of Iceland Research Fund.

References

  1. 1.
    C.D. Pemmaraju, R. Hanafin, T. Archer, H.B. Braun, S. Sanvito, Phys Rev B 78, 054428 (2008)CrossRefGoogle Scholar
  2. 2.
    F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys Rev Lett 99, 085502 (2007)CrossRefGoogle Scholar
  3. 3.
    S. Lany, A. Zunger, Phys Rev Lett 98, 045501 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Janotti, C.G. Van de Walle, Phys Rev. B 76, 165202 (2007)Google Scholar
  5. 5.
    D.R. Acosta, L. Castañedaa, A. López-Suáreza, A. Guillén-Santiago, Physica B: Condens Matter 404, 1427 (2009)CrossRefGoogle Scholar
  6. 6.
    C. Rath, S. Singh, P. Mallick, D. Pandey, N.P. Lalla, N.C. Mishra, Indian J Phys 83(4), 415–421 (2009)CrossRefGoogle Scholar
  7. 7.
    C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Appl Surface Sci 247, 493 (2005)CrossRefGoogle Scholar
  8. 8.
    T.R. Paudel, W.R.L. Lambrecht, Phys Rev B 77, 205202 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Lany, A. Zunger, Phys Rev B 81, 113201 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Hanafin, S. Sanvito, J Magn Magn Mater 322, 1209–1211 (2010)CrossRefGoogle Scholar
  11. 11.
    A.O. Ankiewicz, J Appl Phys 101, 024324 (2007)CrossRefGoogle Scholar
  12. 12.
    J.S. Thakur, G.W. Auner, V.M. Naik, C. Sudakar, P. Kharel, G. Lawes, R. Uryanarayanan, R. Naik, J Appl Phys 102, 093904 (2007)CrossRefGoogle Scholar
  13. 13.
    X.-C. Liu, E.-W. Shi, Z.-Z. Chen, B.-Y. Chen, T. Zhang, L.-X. Song, K.-J. Zhou, M.-Q. Cui, W.-S. Yan, Z. Xie, B. He, S.-Q. Wei, J Phys: Condens Matter 20, 025208 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Science InstituteUniversity of IcelandReykjavíkIceland

Personalised recommendations