Journal of Materials Science: Materials in Electronics

, Volume 22, Issue 9, pp 1248–1257

Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method

Article

Abstract

The specific contact resistance of the screen-printed Ag contacts in the silicon solar cells has been investigated by applying two independent test methodologies such as three-point probe (TPP) and well-known transfer length model (TLM) test structure respectively. This paper presents some comparative results obtained with these two measurement techniques for the screen-printed Ag contacts formed on the porous silicon antireflection coating (ARC) in the crystalline silicon solar cells. The contact structure consists of thick-film Ag metal contacts patterned on the top of the etched porous silicon surface. Five different contact formation temperatures ranging from 725 to 825 °C for few minutes in air ambient followed by a short time annealing step at about 450 °C in nitrogen ambient was applied to the test samples in order to study the specific contact resistance of the screen-printed Ag metal contact structure. The specific contact resistance of the Ag metal contacts extracted based on the TPP as well as TLM test methodologies has been compared and verified. It shows that the extraction procedure based on the TPP method results in specific contact resistance, ρc = 2.15 × 10−6 Ω-cm2 indicating that screen-printed Ag contacts has excellent ohmic properties whereas in the case of TLM method, the best value of the specific contact resistance was found to be about ρc = 8.34 × 10−5 Ω-cm2. These results indicate that the ρc value extracted for the screen-printed Ag contacts by TPP method is one order of magnitude lower than that of the corresponding value of the ρc extracted by TLM method. The advantages and limitations of each of these techniques for quantitatively evaluating the specific contact resistance of the screen-printed Ag contacts are also discussed.

References

  1. 1.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 18, 805–810 (2007)CrossRefGoogle Scholar
  2. 2.
    P. Doshi, J. Meija, K. Tate, A. Rohatgi, IEEE Trans. Electron Dev. ED-44(9), 1417–1423 (1997)Google Scholar
  3. 3.
    P.N. Vinod, Solid State Commun. 149, 957–961 (2009)CrossRefGoogle Scholar
  4. 4.
    D.K. Schroder, D.L. Meier, IEEE Trans. Electron Dev. 31, 631–637 (1984)Google Scholar
  5. 5.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 19, 594–601 (2008)CrossRefGoogle Scholar
  6. 6.
    S.M. Sze, Physics of the semiconductor devices (Wiley, New York, 1982)Google Scholar
  7. 7.
    H.H. Berger, J. Electrochem. Soc. 119, 507–514 (1972)CrossRefGoogle Scholar
  8. 8.
    W. Shockley, Report No. A1-TOR-64-207 (September 1964, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, OH, USA)Google Scholar
  9. 9.
    G.K. Reeves, H.B. Harrison, IEEE Trans. Electron Dev. Lett. EDL-3, 111–113 (1982)Google Scholar
  10. 10.
    S.J. Proctor, L.W. Lindholm, IEEE Trans. Electron Dev. Lett. EDL-3, 294–296 (1982)Google Scholar
  11. 11.
    J. Chen, W.L. Oldham, IEEE Trans. Electron Dev. Lett. EDL-5, 178–180 (1984)Google Scholar
  12. 12.
    M. Melczarsky, G. Gallego Garcia, N.E. Posthuma, E. Van Kerschaver, G. Beaucarne, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, PA, 2009, 960–963Google Scholar
  13. 13.
    P.N. Vinod, B.C. Chakravarty, R. Kumar, M. Lal, S.N. Singh, Semicond. Sci. Technol. 15, 286–290 (2000)CrossRefGoogle Scholar
  14. 14.
    P.N. Vinod, Semicond. Sci. Technol. 20, 966–971 (2005)CrossRefGoogle Scholar
  15. 15.
    H.H. Berger, Solid State Electron. 15, 145–158 (1972)CrossRefGoogle Scholar
  16. 16.
    D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York, 1998)Google Scholar
  17. 17.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 21, 730–736 (2010)Google Scholar
  18. 18.
    P.N. Vinod, M. Lal, J. Mater. Sci.: Mater. Electron. 16, 1–6 (2005)CrossRefGoogle Scholar
  19. 19.
    P.N. Vinod, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, 1341–1434Google Scholar
  20. 20.
    P.N. Vinod, J. Alloy. Compd. 470, 393–396 (2009)CrossRefGoogle Scholar
  21. 21.
    W.D. Kingery, J. Appl. Phys. 30, 301–312 (1959)CrossRefGoogle Scholar
  22. 22.
    C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878–1880 (2003)CrossRefGoogle Scholar
  23. 23.
    Y.S. Chung, H.G. Kim, IEEE Trans. Compon. Hybrids Manuf. Technol. 11, 195–199 (1988)CrossRefGoogle Scholar
  24. 24.
    P.N. Vinod, in Proceedings of the 33rd IEEE Photovoltaic Specialist Conference (PVSC), San Diego, CA (11–16 May 2008) 1–5Google Scholar
  25. 25.
    International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net (2007)
  26. 26.
    A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)CrossRefGoogle Scholar
  27. 27.
    M. Horties, S.W. Glunz, Prog. Photovolt. Res. Appl. 16, 555–560 (2007)CrossRefGoogle Scholar
  28. 28.
    S.P. Zimin, V.S. Kuznetsova, A.V. Prokaznikov, Appl. Surf. Sci. 91, 355–358 (1995)Google Scholar
  29. 29.
    C.Y. Chang, Y.K. Feng, S.M. Sze, Solid-State Electron. 14, 541–554 (1971)CrossRefGoogle Scholar
  30. 30.
    C.M. Osborn, K.B. Bellur, Thin Solid Films 332, 428–436 (1998)CrossRefGoogle Scholar
  31. 31.
    A.C.Y. Yu, Solid State Electron. 13, 239–245 (1970)CrossRefGoogle Scholar
  32. 32.
    F.A. Podovani, R. Stratton, Solid State Electron. 9, 965–976 (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Naval Physical and Oceanographic LaboratoryCochinIndia

Personalised recommendations