Fabrication and magnetoresistivit of ex-situ processed MgB2/Fe monofilament tapes without any intermediate annealing

  • E. Yucel
  • Cabir Terzioglu
  • A. Varilci
  • I. Belenli


We have fabricated MgB2/Fe monofilament wires and tapes by a powder-in tube (PIT) technique, using an ex-situ process without any intermediate annealing. MgB2/Fe monofilament tapes were annealed at 650–1,050°C for 60 min and 950°C for 30–240 min. We have investigated the effect of annealing temperatures and times on the formation of MgB2 phase, activation energy, temperature dependence of irreversibility field H irr(T) and upper critical field H c2(T), transition temperature (T c), lattice parameters (a and c), full width at half maximum, crystallinity, resistivity, residual resistivity ratio, active cross-sectional area fraction and critical current densities. We observed that the activation energies of the MgB2/Fe monofilament samples increased with increasing annealing temperature up to 950°C and with increasing annealing time up to 60 min while it decreased with increasing magnetic field. For the MgB2/Fe monofilament tape, the slope of the H c2T and H irrT curves decreased with increasing annealing temperature from 850 to 950°C as well as with increasing annealing time from 30 to 60 min. The transport and microstructure investigations show that T c, J c and microstructure properties are remarkably enhanced with increasing annealing temperature. The highest value of critical current density is obtained for the sample annealed at 950°C for 60 min. The J c and T c offset values of the sample annealed at 950°C for 60 min were found to be 260.43 A/cm2 at 20 and 38.1 K, respectively.


Critical Current Density Increase Annealing Temperature Physical Property Measurement System Increase Annealing Time Room Temperature Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the National Boron Research Institute (BOREN) (Project no: 2006-22-Ç21-15) and partly by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project no: 108M201), and partly by the Turkish State Planning Organization (DPT) (Project no: 2004K120200).


  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)CrossRefGoogle Scholar
  2. 2.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol 14, R115–R146 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Zhou, Y. Zhang, A.V. Pan, S.X. Dou, K.C. Chung, Y.K. Kim, J.M. Yoo, Supercond. Sci. Technol 22, 045018 (2009)CrossRefGoogle Scholar
  4. 4.
    I.A. Ansari, M. Shahabuddin, N.S. Alzayed, A. Vajpayee, V.P.S. Awana, H. Kishan, Phys. C 470, 369–372 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindfleish, M. Tomsic, J. Appl. Phys 105, 103913 (2009)CrossRefGoogle Scholar
  6. 6.
    M.J. Qin, X.L. Wang, S. Soltanian, Li AH, H.K. Liu, S.X. Dou, Phys. Rev. B 64, 060505(R) (2001)Google Scholar
  7. 7.
    P. Fabbricatore, M. Greco, R. Musenich, P. Kovac, I. Husek, F. Gomory, Supercond. Sci. Technol 16, 364–370 (2003)CrossRefGoogle Scholar
  8. 8.
    Z.X. Shi, M.A. Susner, M. Majoros, M.D. Sumption, X. Peng, M. Rindfleisch, M.J. Tomsic, E.W. Collings, Supercond. Sci. Technol 23, 045018 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Gao, D. Wang, X. Zhang, Y. Ma, S. Awaji, G. Nishijima, K. Watanabe, R. Flükiger, Supercond. Sci. Technol 23, 045024 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Talapatra, S.K. Das, S.K. Bandyopadhyay, P. Barat, P. Sen, R. Rawat, A. Banerjee, T. Butz, J. Phys. Chem. Solids 70, 527–532 (2009)CrossRefGoogle Scholar
  11. 11.
    N. Ojha, V.K. Malik, R. Singla, C. Bernhard, G.D. Varma, Supercond. Sci. Technol 23, 045005 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Yamada, M. Igarashi, Y. Nemoto, Y. Yamada, K. Tachikawa, H. Kitaguchi, A. Matsumoto, H. Kumakura, Supercond. Sci. Technol 23, 045030 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Malagoli, V. Braccini, M. Tropeano, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Putti, C. Ferdeghini, E. Mossang, A. Polyanskii, D.C. Larbalestier, J. Appl. Phys 104, 103908 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Vignolo, G. Romano, A. Malagoli, V. Braccini, C. Bernini, M. Tropeano, A. Martinelli, V. Cubeda, A. Tumino, M. Putti, C. Ferdeghini, A.S. Siri, IEEE Trans. Appl. Supercond 18, 2 (2008)CrossRefGoogle Scholar
  15. 15.
    T. Machi, S. Shimura, N. Koshizuka, M. Murakami, Phys. C 392–396, 1039–1042 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Shimura, T. Machi, K. Nakao, N. Koshizuka, S. Tanaka, K. Mochizuki, N. Shibata, K. Ushio, Phys. C 426–431, 1254–1260 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Asthana, A. Matsumoto, H. Kitaguchi, Y. Matsui, T. Hara, K. Watanabe, H. Yamada, N. Uchiyama, H. Kumakura, Supercond. Sci. Technol 21, 115013 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Hata, T. Yoshidome, H. Sosiati, Y. Tomokiyo, N. Kuwano, A. Matsumoto, H. Kitaguchi, H. Kumakura, Supercond. Sci. Technol 19, 161–168 (2006)CrossRefGoogle Scholar
  19. 19.
    P. Kovac, M. Reissner, T. Melisek, I. Husek, S. Mohammad, J. Appl. Phys 106, 013910 (2009)CrossRefGoogle Scholar
  20. 20.
    S.M. Hwang, J.H. Choi, C.M. Lee, E.C. Park, J.H. Lim, J. Joo, W.N. Kang, C.-J. Kim, IEEE Trans. Appl. Supercond 19, 3 (2009)Google Scholar
  21. 21.
    C.M. Lee, J.H. Park, S.M. Hwang, J.H. Lim, J. Joo, W.N. Kang, C.J. Kim, Phys. C 469, 1527–1530 (2009)CrossRefGoogle Scholar
  22. 22.
    V. Braccini, A. Malagoli, A. Tumino, M. Vignolo, C. Bernini, C. Fanciulli, G. Romano, M. Tropeano, A.S. Siri, G. Grasso, IEEE Trans. Appl. Supercond 17, 2 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, IEEE Trans. Appl. Supercond 19, 3 (2009)CrossRefGoogle Scholar
  24. 24.
    X.L. Wang, Q.W. Yao, J. Horvat, M.J. Qin, S.X. Dou, Supercond. Sci. Technol 17, L21–L24 (2004)CrossRefGoogle Scholar
  25. 25.
    K.Q. Ruan, H.L. Li, Y. Yu, C.Y. Wang, L.Z. Cao, C.F. Liu, S.J. Du, G. Yan, Y. Feng, X. Wu, J.R. Wang, X.H. Liu, P.X. Zhang, X.Z. Wu, L. Zhou, Phys. C 386, 578–580 (2003)CrossRefGoogle Scholar
  26. 26.
    X.L. Wang, S. Soltanian, J. Horvat, A.H. Liu, M.J. Qin, H.K. Liu, S.X. Dou, Phys. C 361, 149–155 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Balamurugan, T. Nakamura, K. Osamura, I. Muta, T. Hoshino, Phys. C 412–414, 1184–1188 (2004)CrossRefGoogle Scholar
  28. 28.
    D. Wang, Y. Ma, Z. Yu, Z. Gao, X. Zhang, K. Watanabe, E. Mossang, Supercond. Sci. Technol 20, 574–578 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Supercond. Sci. Technol 16, 1052–1058 (2003)CrossRefGoogle Scholar
  30. 30.
    B.D. Cullity, Element of X-ray Diffraction (Addition-Wesley, Reading, MA, 1978)Google Scholar
  31. 31.
    M.A. Aksan, A. Güldeste, Y. Balcı, M.E. Yakıncı, Solid State Commun 137, 320–325 (2006)CrossRefGoogle Scholar
  32. 32.
    J.M. Rowell, Supercond. Sci. Technol 16, R17–R27 (2003)CrossRefGoogle Scholar
  33. 33.
    R.H.T. Wilke, S.L. Budko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. C 424, 1–16 (2005)CrossRefGoogle Scholar
  34. 34.
    J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol 19, L33–L36 (2006)CrossRefGoogle Scholar
  35. 35.
    X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindfleish, M. Tomsic, J. Appl. Phys 105, 103913 (2009)CrossRefGoogle Scholar
  36. 36.
    J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol 20, 1026–1031 (2007)CrossRefGoogle Scholar
  37. 37.
    H. Kumakura, H. Kitaguchi, A. Matsumoto, H. Yamada, Supercond. Sci. Technol 18, 1042–1046 (2005)CrossRefGoogle Scholar
  38. 38.
    H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol 17, S486–S489 (2004)CrossRefGoogle Scholar
  39. 39.
    N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana, J. Appl. Phys 105, 07E315 (2009)CrossRefGoogle Scholar
  40. 40.
    C. Terzioglu, A. Varilci, I. Belenli, J. Alloys Compd 478, 836–841 (2009)CrossRefGoogle Scholar
  41. 41.
    C. Fischer, W. Haßler, C. Rodig, O. Perner, G. Behr, M. Schubert, K. Nenkov, J. Eckert, B. Holzapfel, L. Schultz, Phys. C 406, 121–130 (2004)CrossRefGoogle Scholar
  42. 42.
    Q. Zhao, Y. Liu, Y. Han, M. Zongqing, Q. Shi, Z. Gao, Phys. C 469, 857–861 (2009)CrossRefGoogle Scholar
  43. 43.
    J.H. Kim, S.X. Dou, J.L. Wang, D.Q. Shi, X. Xu, M.S.A. Hossain, W.K. Yeoh, S. Choi, T. Kiyoshi, Supercond. Sci. Technol 20, 448–451 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Yucel
    • 1
  • Cabir Terzioglu
    • 1
  • A. Varilci
    • 1
  • I. Belenli
    • 1
  1. 1.Department of Physics, Faculty of Arts and SciencesAbant I zzet Baysal UniversityBoluTurkey

Personalised recommendations