Advertisement

Two-dimensional nanoparticle arrays formed by dewetting of thin gold films deposited on pre-patterned substrates

  • Dong WangEmail author
  • Peter Schaaf
Article

Abstract

We demonstrate the formation of accurate 2D gold nanoparticle arrays via solid-state dewetting on a pre-patterned substrate. The annealing-induced dewetting of Au film on both flat and pre-patterned SiO2 substrates is investigated. The pre-patterned structures affect clearly the formation of nanoparticles, and there is a depth effect of the pre-patterned grooves on the formation of nanoparticles during dewetting. Especially in pre-patterned areas with deep grid grooves (depth 150 nm) there is almost one single particle formed in the flat areas of every unit square, thus resulting in a very periodic 2D structure of gold nanoparticles.

Keywords

Groove Width Groove Depth Nanoparticle Array Deep Groove Dewetting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Mr. Joachim Döll from the Department of Micromechanical Systems at Ilmenau University of Technology for deposition of Au films.

References

  1. 1.
    J.A. Fan, C.H. Wu, K. Bao, J.M. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 328, 1135 (2010)CrossRefGoogle Scholar
  2. 2.
    J.Y. Cheng, C.A. Ross, V.Z.H. Chan, E.L. Thomas, R.G.K. Lammertink, G.J. Vancso, Adv. Mater. 13, 1174 (2001)CrossRefGoogle Scholar
  3. 3.
    W. Fritzsche, T.A. Taton, Nanotechnology 14, R63 (2003)CrossRefGoogle Scholar
  4. 4.
    S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science 316, 729 (2007)CrossRefGoogle Scholar
  5. 5.
    Y.F. Guan, R.C. Pearce, A.V. Melechko, D.K. Hensley, M.L. Simpson, P.D. Rack, Nanotechnology 19, 235604 (2008)CrossRefGoogle Scholar
  6. 6.
    G. Schmid, U. Simon, Chem. Commun. 6, 697 (2005)CrossRefGoogle Scholar
  7. 7.
    E.M. Hicks, S.L. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Kall, Nano. Lett. 5, 1065 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, S. Schlagowski, Science 282, 916 (1998)CrossRefGoogle Scholar
  9. 9.
    D. Kim, A.L. Giermann, C.V. Thompson, Appl. Phys. Lett. 95, 251903 (2009)CrossRefGoogle Scholar
  10. 10.
    A.L. Giermann, C.V. Thompson, Appl. Phys. Lett. 86, 121903 (2005)CrossRefGoogle Scholar
  11. 11.
    S.J. Henley, J.D. Carey, S.R.P. Silva, Phys. Rev. B 72, 195408 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Kan, H. Wong, J. Appl. Phys. 97, 043515 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Kojima, T. Kato, Nanotechnology 19, 255605 (2008)CrossRefGoogle Scholar
  14. 14.
    E. Jiran, C.V. Thompson, Thin Solid Films 208, 23 (1992)CrossRefGoogle Scholar
  15. 15.
    W.W. Mullins, J. Appl. Phys. 28, 333 (1957)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano®Ilmenau University of TechnologyIlmenauGermany

Personalised recommendations