Advertisement

Study of the structural and dielectric properties of Bi2O3 and PbO addition on BiNbO4 ceramic matrix for RF applications

  • J. S. Almeida
  • T. S. M. Fernandes
  • A. J. M. Sales
  • M. A. S. Silva
  • G. F. M. P. Júnior
  • H. O. Rodrigues
  • A. S. B. SombraEmail author
Article

Abstract

In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.

Keywords

Dielectric Property Dielectric Loss Dielectric Permittivity Bi2O3 Doping Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work partly sponsored by CAPES, CNPq and FUNCAP (Brazilian agencies), Physics Department, Federal University of Ceará—UFC.

References

  1. 1.
    S.S. Dunkle, K.S. Suslick, Photodegradation of BiNbO4 powder during photocatalytic reactions. J. Phys. Chem. C 113(24), 10341–10345 (2009)CrossRefGoogle Scholar
  2. 2.
    B. Aurivellius, Ark. Kemi 3, 153 (1951)Google Scholar
  3. 3.
    R.S. Roth, J.L. Waring, J. Res. Natl. Bur. Stand. 66A, 451 (1962)Google Scholar
  4. 4.
    R.S. Roth, J.L. Waring, Am. Mineral. 48, 1348 (1963)Google Scholar
  5. 5.
    D. Zhou, H. Wang, X. Yao, X. Wei, F. Xiang, L. Pang, Phase transformation in BiNbO4 ceramics. Appl. Phys. Lett. 90, 172910 (2007)Google Scholar
  6. 6.
    M.A. Subramanian, J.C. Calabrese, Mater. Res. Bull. 28, 523 (1993)CrossRefGoogle Scholar
  7. 7.
    E.S. Kim, W. Choi, Effect of phase transition on the microwave dielectric properties of BiNbO4. J. Eur. Ceram. Soc. 26, 1761–1776 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Kagata, T. Inoue, J. Kato, I. Kameyama, Jpn. J. Appl. Phys. 31, 3152–3155 (1992)CrossRefGoogle Scholar
  9. 9.
    D. Zhou, H. Wang, X. Yao, Layered complex structures of Bi2(Zn2/3Nb4/3)O7 and BiNbO4 dielectric ceramics. Mat. Chem. Phys. 105, 151–153 (2007)Google Scholar
  10. 10.
    A. Petosa et al., IEEE Trans. Antennas Propag. 40(3), 35–48 (1998)Google Scholar
  11. 11.
    R.K. Mongia et al., Int. J. Microw. Millimetre Wave Comput. Aided Eng. 4, 230–247 (1994)CrossRefGoogle Scholar
  12. 12.
    Y.M.M. Antar, in Proceedings of the 20th National Radio Science Conference, 2003Google Scholar
  13. 13.
    A.A. Kishk, in Proceedings of the IEEE Radar Conference, 2003Google Scholar
  14. 14.
    F.N.A. Freire, M.R.P. Santos, F.M.M. Pereira, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, E.O. Sancho, M.M. Costa, A.S.B. Sombra, Studies of the temperature coefficient of capacitance (TCC) of a new electroceramic composite: Pb(Fe0.5Nb0.5)O3 (PFN)Cr0.75Fe1.25O3(CRFO). J. Mater. Sci. Mater. Electron 20, 149–156 (2009). 20CrossRefGoogle Scholar
  15. 15.
    G.G. Raju, Dielectrics in Electric Fields, chaps. 3–4. (University of Windsor, Windsor)Google Scholar
  16. 16.
    D. Zhou, H. Wang, X. Yao, Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution. Mater. Chem. Phys. 104, 397–402 (2007)Google Scholar
  17. 17.
    N. Wang, M.-Y. Zhao, Z.-W. Yin, W. Li, Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of BiNbO4 ceramics. Mater. Res. Bull. 39, 439–448 (2004)Google Scholar
  18. 18.
    C. Yeh, F.I. Shimabukuro, The essence of dielectric waveguides (Springer, New York, 2008)CrossRefGoogle Scholar
  19. 19.
    M.N. Afsar, K.J. Button, Millimeter-wave dielectric measurement of materials, in Proceedings of IEEE 73, 131 (1985)Google Scholar
  20. 20.
    J.W. Lamb, Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared MM Waves 17, 1997 (1996)Google Scholar
  21. 21.
    J.R. Birch, J.D. Dromey, J. Lisurf, The optical constants of some common lowloss polymers between 4 and 40 cm−1. Infrared Phys. 21, 225 (1981)Google Scholar
  22. 22.
    M.N. Afsar, Precision dielectric measurements of non-polar polymers in millimeter wavelength range. IEEE Trans. Microw. Theory Tech. MTT-33, 1410 (1985)Google Scholar
  23. 23.
    J.R. Birch and T.J. Parker, “Infrared and Millimeter Waves,” vol. 2, K.J. Button, (ed.), Academic, New York (1979)Google Scholar
  24. 24.
    W.B. Bridges, M.B. Kline, E. Schwarz, Low loss flexible dielectric waveguides for millimeter wave transmission and its application to devices. IEEE Trans. Microw. Theory Tech. MTT-30, 286 (1982)Google Scholar
  25. 25.
    K.C. Kao, Dielectric Phenomena in Solids. (Elsevier, San Diego), pp 90–100Google Scholar
  26. 26.
    H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967)CrossRefGoogle Scholar
  27. 27.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–67 (1969)CrossRefGoogle Scholar
  28. 28.
    R.A. Young, The Rietveld Method (Oxford University Press/IUCr, Oxford, 1996), pp. 1–38Google Scholar
  29. 29.
    F.M.M. Pereira, M.R.P. Santos, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, M.M. Costa, A.S.B. Sombra, Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range. (Springer, 2008)Google Scholar
  30. 30.
    E. Barsoukov, J.R. Macdonald, Impedance spectroscopy theory, experiment, and applications, 2nd edn. (Wiley, Hoboken, 2005), pp. 7–9, 34–41Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. S. Almeida
    • 1
    • 2
  • T. S. M. Fernandes
    • 2
    • 3
  • A. J. M. Sales
    • 2
    • 3
  • M. A. S. Silva
    • 2
  • G. F. M. P. Júnior
    • 2
    • 3
  • H. O. Rodrigues
    • 2
    • 3
  • A. S. B. Sombra
    • 1
    • 2
    Email author
  1. 1.Physics DepartmentFederal University of Ceará, UFCFortalezaBrazil
  2. 2.Telecommunications and Materials Science and Engineering Laboratory (LOCEM)FortalezaBrazil
  3. 3.Engineering Tele-Informatics Department (DETI)Federal University of Ceará, UFCFortalezaBrazil

Personalised recommendations