Advertisement

Structure, dielectric and magnetic properties of Ba6FeNb9O30 tungsten bronze ceramics

  • P. P. Liu
  • S. Y. Wu
  • X. L. Zhu
  • X. M. Chen
  • X. Q. Liu
Article

Abstract

Ba6FeNb9O30 ceramics were synthesized by a standard solid-state sintering process. X-ray powder diffraction (XRD) refinements were carried out to analyze the crystal structure, and the dielectric, ferroelectric and magnetic properties were investigated and discussed. The tetragonal tungsten bronze structure in space group P4bm was determined with the lattice parameters: a = 12.597(6) Å, b = 12.597(6) Å, c = 3.989(1) Å. An extremely high dielectric constant was indicated at higher temperatures, and it dropped quickly when the sample was cooled down through a critical temperature, and this critical temperature showed strong frequency dependence. This dielectric relaxation was more obviously observed in the dielectric loss curve. The nonlinear magnetic hysteresis curve was observed in the present ceramics at 5 K, which was related to the magnetic ions (Fe3+) in tungsten bronze structure.

Keywords

High Dielectric Constant Tungsten Bronze Tetragonal Tungsten Bronze Strong Frequency Dependence Tungsten Bronze Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work was supported by Natural Science Foundation of China under grant numbers 50832005 and 90922024.

References

  1. 1.
    I. Levin, M.C. Stennett, G.C. Miles, D.I. Woodward, A.R. West, I.M. Reaney, Appl. Phys. Lett. 89, 122908 (2006)CrossRefGoogle Scholar
  2. 2.
    X.L. Zhu, X.M. Chen, X.Q. Liu, J. Mater. Res. 22, 2217 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Grenthe, M. Sundberg, J. Solid State Chem. 167, 412 (2002)Google Scholar
  4. 4.
    M.C. Stennett, I.M. Reaney, G.C. Miles, D.I. Woodward, A.R. West, C.A. Kirk, I. Levin, J. Appl. Phys. 101, 104114 (2007)CrossRefGoogle Scholar
  5. 5.
    D.C. Arnold, F.D. Morrison, J. Mater. Chem. 19, 6485 (2009)CrossRefGoogle Scholar
  6. 6.
    E.L. Ventiurini, E.G. Spencer, A.A. Balmann, J. Appl. Phys. 40, 1622 (1969)CrossRefGoogle Scholar
  7. 7.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature. 442, 759 (2006)CrossRefGoogle Scholar
  8. 8.
    S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Yoshii, N. Ikeda, T. Michiuchi, Y. Yokota, Y. Okajiama, Y. Yoneda, Y. Matsuo, Y. Horibe, S. Mori, J. Solid State Chem. 182, 1611 (2009)CrossRefGoogle Scholar
  10. 10.
    P.H. Fang, R.S. Roth, J. Appl. Phys. Suppl. 31, 278S (1960)CrossRefGoogle Scholar
  11. 11.
    N.N. Krainik, V.A. Isupov, M.F. Bryzhina, A.I. Agranovskaya, Sov. Phys. Cryst. 9, 281 (1964)Google Scholar
  12. 12.
    I.H. Ismailzade, N.G. Huseynov, G.J. Sultanov, E.M. Hajiyev, Ferroelectrics. 13, 389 (1976)CrossRefGoogle Scholar
  13. 13.
    M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der mühll, O. Nguyen, M. Maglione, Solid State Sci. 11, 1118 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Giri, K. Ghoshray, Phys. Rev. B. 57, 5918 (1998)CrossRefGoogle Scholar
  15. 15.
    S. Fabbrici, E. Montanari, L. Righi, G. Calestani, A. Migliori, Chem. Mater. 16, 3007 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Mezzadri, S. Fabbrici, E. Montanari, L. Righi, G. Calestani, E. Gilioli, F. Bolzoni, A. Migliori, Phys. Rev. B. 78, 064111 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Yuan, X.M. Chen, Y.J. Wu, J. Appl. Phys. 98, 084110 (2005)CrossRefGoogle Scholar
  18. 18.
    P.P. Liu, X.L. Zhu, X.M. Chen, J. Appl. Phys. 106, 074111 (2009)CrossRefGoogle Scholar
  19. 19.
    R. Brandt, H.K. Mueller-Buschbaum, Monats. Chem 117, 1239 (1986)CrossRefGoogle Scholar
  20. 20.
    M.C. Foster, G.R. Brown, R.M. Nielson, S.C. Abrahams, J. Appl. Cryst. 30, 495 (1997)CrossRefGoogle Scholar
  21. 21.
    J. Rodriguez-Carvajal, Recent developments of the program FULLPROF in commission on powder diffraction (IUCr). Newsletter 26, 12 (2001)Google Scholar
  22. 22.
    P. Lunkenheimer, T. Gotzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Solid State Chem. 179, 3965 (2006)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 92, 022904 (2007)CrossRefGoogle Scholar
  24. 24.
    X.L. Zhu, S.Y. Wu, X.M. Chen, Appl. Phys. Lett. 91, 162906 (2007)CrossRefGoogle Scholar
  25. 25.
    X.L. Zhu, X.M. Chen, X.Q. Liu, X.G. Li, J. Mater. Res. 23, 3112 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. P. Liu
    • 1
  • S. Y. Wu
    • 1
  • X. L. Zhu
    • 1
  • X. M. Chen
    • 1
  • X. Q. Liu
    • 1
  1. 1.Laboratory of Dielectric Materials, Department of Material Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations