Advertisement

DC accelerated aging behavior of Co–Dy–Nb doped Zn–V–M-based varistors with sintering process

  • Choon-Woo NahmEmail author
Article

Abstract

The DC accelerated aging behavior of the Co–Dy–Nb doped Zn–V–Mn-based varistors was investigated at different sintering temperatures of 850–950 °C. The microstructure of the samples consisted of ZnO grain as the main phase, and Zn3(VO4)2, ZnV2O4, and DyVO4 as the secondary phases, which acts as liquid-phase sintering aids. The nonlinear coefficient exhibited the highest value, reaching 57 for a sintering temperature of 950 °C and the lowest value, reaching 8 for a sintering temperature of 850 °C. Concerning stability, the varistors sintered at lower temperature than 925 °C exhibited a relatively low stability with %ΔE1 mA more than 10%. However, the varistors sintered at higher temperature than 925 °C exhibited a high stability. The varistors sintered at 925 °C exhibited the most stable accelerated aging characteristics, with %ΔE1 mA = −3.9%, %Δα = −40.3%, %ΔεAPP′ = −1.0%, and %Δtanδ = +19.1% for DC accelerated aging stress of 0.85 E1 mA/85 °C/24 h.

Keywords

Sinter Temperature Schottky Barrier Leakage Current Density Nonlinear Coefficient Sintered Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  4. 4.
    C.-W. Nahm, Solid State Commun. 126, 281 (2003)CrossRefGoogle Scholar
  5. 5.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  6. 6.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  7. 7.
    C.-T. Kuo, C.-S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  8. 8.
    C.-T. Kuo, C.-S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2949 (1998)CrossRefGoogle Scholar
  9. 9.
    C.-S. Chen, J. Mater. Sci. 38, 1033 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Pfeiffer, K.M. Knowles, J. Eur. Ceram. Soc. 24, 1199 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Zhao, X.C. Liu, W.M. Wang, F. Gao, C.S. Tian, Ceram. Int. 34, 1425 (2008)CrossRefGoogle Scholar
  12. 12.
    C.-W. Nahm, J. Mater. Sci. 42, 8370 (2007)CrossRefGoogle Scholar
  13. 13.
    C.-W. Nahm, Ceram. Int. 35, 2679 (2009)CrossRefGoogle Scholar
  14. 14.
    C.-W. Nahm, Ceram. Int. 35, 3435 (2009)CrossRefGoogle Scholar
  15. 15.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  16. 16.
    M. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)CrossRefGoogle Scholar
  17. 17.
    J. Fan, R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994)CrossRefGoogle Scholar
  18. 18.
    M.F. Yan, A.H. Heuer, Additives and Interfaces in Electronic Ceramics (American Ceramic Society, Columbus, OH, 1983), p. 71Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Semiconductor Ceramics Lab., Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations