Advertisement

Sintering and electrical properties of Ce0.8Sm0.2O1.9 film prepared by spray pyrolysis and tape casting

  • Xibao LiEmail author
  • Gangqin Shao
  • Xiaohua Yu
  • Jian Wang
  • Hongxing Gu
Article

Abstract

Ce0.8Sm0.2O1.9 (SDC) powder was synthesized by spray pyrolysis at 650 °C. XRD results showed that phase-pure SDC powder with an average crystallite size of 11 nm was synthesized. SDC electrolyte film was prepared by tape casting and sintered at different temperatures of 1,300, 1,400 and 1,500 °C for 2 h, respectively. The SDC electrolyte film was relatively denser and showed finer microstructure at relatively lower temperature of 1,400 °C, which might be due to the high sintering activity of the spray pyrolysis SDC powder. The ionic conductivity of the SDC electrolyte film sintered at 1,400 °C reached a maximum value of 9.5 × 10−3 S cm−1 (tested at 600 °C) with an activation energy for conduction of 0.90 eV.

Keywords

CeO2 Average Crystallite Size Spray Pyrolysis Lower Sinter Temperature Tape Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Special Fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (No. 2008-ZD-1).

References

  1. 1.
    K. Singh, S.A. Acharya, S.S. Bhoga, Ionics 13, 429 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electrochem. 18, 527 (1988)CrossRefGoogle Scholar
  4. 4.
    C. Milliken, S. Guruswamy, J. Am. Ceram. Soc. 85, 10–2479 (2002)CrossRefGoogle Scholar
  5. 5.
    W. Huang, P. Shuk, M. Greenblatt, Solid State Ionics 100, 23 (1997)CrossRefGoogle Scholar
  6. 6.
    H.F. Lin, C.S. Ding, K. Sato, Y. Tsutai, H. Ohtaki, M. Iguchi, C. Wada, T. Hashida, Mater. Sci. Eng. B 148(1–3), 73 (2008)CrossRefGoogle Scholar
  7. 7.
    G.B. Balazs, R.S. Glass, Solid State Ionics 76, 155 (1995)CrossRefGoogle Scholar
  8. 8.
    L.N. Gu, G.Y. Meng, Mater. Res. Bull. 43, 6–1555 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Yamashita, K.V. Ramanujachary, M. Greenblatt, Solid State Ionics 81, 53 (1995)CrossRefGoogle Scholar
  10. 10.
    M.Y. Cheng, D.H. Hwang, H.S. Sheu, B.J. Hwang, J. Power Sources 175(1), 137 (2008)CrossRefGoogle Scholar
  11. 11.
    B.B. Patil, S.H. Pawar, Appl. Surf. Sci. 253, 4994 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Hiroyuki, D. Hiroshi, K. Mitsunobu, H. Kouji, I. Toru, I. Hiroshi, H. Masaki, K. Koichi, S. Seiichi, Solid State Ionics 178, 399 (2007)CrossRefGoogle Scholar
  13. 13.
    N.P. Prasanth, J.M. Varghese, K. Prasad, B. Krishnan, A. Seema, K.R. Dayas, J. Mater. Sci. Mater. El. 19, 1100 (2008)CrossRefGoogle Scholar
  14. 14.
    F. Snijkers, A.D. Wilde, S. Mullens, J. Luyten, J. Eur. Ceram. Soc. 24, 1107 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xibao Li
    • 1
    Email author
  • Gangqin Shao
    • 1
  • Xiaohua Yu
    • 1
  • Jian Wang
    • 1
  • Hongxing Gu
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis & ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations