Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field

  • Reza Riahifar
  • Babak Raissi
  • Ehsan Marzbanrad
  • Cyrus Zamani


In electrophoretic deposition (EPD), it is assumed that net movement of particles is zero under the influence of alternating current (AC) electric field. For this reason, AC electric field is not used for deposition of ceramic particles while in other areas scientists take the advantage of AC electric field for their purpose. By imposing some modifications on electric field, it is possible to use AC electric fields in processes such as fabrication of miniature ceramic parts. In this paper, non-uniform AC electric field was used to deposit TiO2 nanoparticles on gold electrodes. Acetone was used as dispersing medium to avoid bubble formation at low frequencies. Effect of different parameters such as applied voltage and frequency, time and concentration on deposition pattern was studied and proper factors for optimization of the process were determined.


Electrode Surface Electric Field Strength Alternate Current Deposition Pattern Strong Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Van der Biest, L. Vandeperre, Annu Rev Mater Sci 29, 327–352 (1999)CrossRefGoogle Scholar
  2. 2.
    L. Besra, M. Liu, Prog Mater Sci 52, 1–61 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Hirata, A. Nishimoto, Y. Ishihara, J Ceram Soc Jpn 99(2), 108–113 (1991)Google Scholar
  4. 4.
    B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Electrochem Commun 11, 57–60 (2009)CrossRefGoogle Scholar
  5. 5.
    M.N. Naim, M. Kuwata, H. Kamiya, W. Lenggoro, J Ceram Soc Jpn 117(1), 127–132 (2009)CrossRefGoogle Scholar
  6. 6.
    A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, J Mater Sci 43, 2507–2508 (2008)CrossRefGoogle Scholar
  7. 7.
    B. Raissi, E. Marzbanrad, A.R. Gardeshzadeh, J Eur Ceram Soc 29, 3289–3291 (2009)CrossRefGoogle Scholar
  8. 8.
    A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, H. Mohebbi, J Mater Sci –Mater Electron 20, 127–131 (2009)CrossRefGoogle Scholar
  9. 9.
    K.W. Jiang, W.J. Liu, L.J. Wan, J. Zhang, J Power Sources 172, 358–362 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Morgan, N.G. Green, AC electrokinetics: colloids and nanoparticles (Research Studies Press, England, 2002)Google Scholar
  11. 11.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal dispersion (Cambridge University Press, Cambridge, 1989)Google Scholar
  12. 12.
    R. Riahifar, E. Marzbanrad, B. Raissi, C. Zamani, Mater Lett 64, 559–561 (2010)CrossRefGoogle Scholar
  13. 13.
    N.G. Green, A. Ramos, A. Gonzalez, H. Morgan, A. Castellanos, Phys Rev E: Stat Phys, Plasmas, Fluids 66, 1–11 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Reza Riahifar
    • 1
  • Babak Raissi
    • 1
  • Ehsan Marzbanrad
    • 1
  • Cyrus Zamani
    • 2
  1. 1.Department of CeramicMaterials and Energy Research CenterTehranIran
  2. 2.E2 M/XaRMAE/IN2UB, Department of ElectrònicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations