Large-scale synthesis of silver nanowires via a solvothermal method

  • Dapeng Chen
  • Xueliang Qiao
  • Xiaolin Qiu
  • Jianguo Chen
  • Renzhi Jiang


Silver nanostructures have been synthesized through a simple solvothermal method by reducing silver nitrate (AgNO3) with ethylene glycol (EG) and using poly(vinylpyrrolidone) (PVP) as an adsorption agent. Different concentrations of ferric chloride (FeCl3) are added into the solution. It is found that AgCl colloids formed in the initial stage greatly influence the final morphologies of the products. When a low-concentration FeCl3 solution is used, there is a mixture of silver nanoparticles and nanowires. However, when a high-concentration FeCl3 solution (100 μM) is used, large amounts of AgCl colloids appear, resulting in decreasing free Ag+ during initial formation of silver seeds and slowly releasing of Ag+ to the solution in the subsequent reaction. This leads to the formation of silver nanowires. Furthermore, an increase in the concentration of FeCl3 from 100 to 300 μM results in the synthesis of silver nanowires with larger sizes. In addition, Fe(III) is reduced to Fe(II) form which in turn reacts with and removes adsorbed atomic oxygen from the surface of silver seeds. In this case, uniform silver nanowires can be obtained.



The authors would like to thank Analytical and Testing Center, Huazhong University of Science and Technology, P.R. China, for the test of the samples.


  1. 1.
    R.L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X.W. Qi, L.T. Li, J. Phys. Chem. B. 108, 43–16713 (2004)CrossRefGoogle Scholar
  2. 2.
    S.L.C. Hsu, R.T. Wu, Mater. Lett. 61, 3719 (2007)CrossRefGoogle Scholar
  3. 3.
    G.A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J.R. Martinez-Mendoza, F. Ruiz, J. Nanopart. Res. 10, 1343 (2008)CrossRefGoogle Scholar
  4. 4.
    A.D. McFarland, R.P. Van Duyne, Nano Lett. 3, 1507 (2003)CrossRefGoogle Scholar
  5. 5.
    R.J. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J.E. Sueiras, Chem. Commun. 7, 846 (2004)CrossRefGoogle Scholar
  6. 6.
    Y.J. Han, J.M. Kim, G.D. Stucky, Chem. Mater. 12, 2068 (2000)CrossRefGoogle Scholar
  7. 7.
    X. Hu, C.T. Chan, Appl. Phys. Lett. 85, 1520 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Chen, L. Wang, R.L. Li, G.H. Jiang, H.J. Yu, T. Chen, J. Mater. Sci. 42, 3172 (2007)CrossRefGoogle Scholar
  9. 9.
    J.Y. Piquemal, G. Viau, P. Beaunier, F. Bozon-Verduraz, F. Fievet, Mater. Res. Bull. 38, 389 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Reyes-Gasga, J.L. Elechiguerra, C. Liu, A. Camacho-Bragado, J.M. Montejano-Carrizales, M.J. Yacaman, J. Cryst. Growth 286, 162 (2006)CrossRefGoogle Scholar
  11. 11.
    S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y.N. Xia, Nano Lett. 8, 2077 (2008)CrossRefGoogle Scholar
  12. 12.
    S.H. Kim, B.S. Choi, K. Kang, Y.S. Choi, S.I. Yang, J. Alloys Compd. 433, 261 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Slistan-Grijalva, R. Herrera-Urbina, J.F. Rivas-Silva, M. Avalos-Borja, F.F. Castillon-Barraza, A. Posada-Amarillas, Physica E 25, 438 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Xu, J. Hu, C.J. Peng, H.L. Liu, Y. Hu, J. Colloid Interface Sci. 298, 689 (2006)CrossRefGoogle Scholar
  15. 15.
    Z.H. Wang, J.W. Liu, X.G. Chen, J.X. Wan, Y.T. Qian, Chem. Chem. Eur. J. 11, 160 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, S. Yu, C. Wang, X. Li, Y. Zhu, Z. Chen, Adv. Mater. 11, 850 (1999)CrossRefGoogle Scholar
  17. 17.
    K. Zou, X.H. Zhang, X.F. Duan, X.M. Meng, S.K. Wu, J. Cryst. Growth 273, 285 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Mazur, Electrochem. Commun. 6, 400 (2004)CrossRefGoogle Scholar
  19. 19.
    L.M. Huang, H.T. Wang, Z.B. Wang, A. Mitra, K.N. Bozhilov, Y.S. Yan, Adv. Mater. 14, 61 (2002)CrossRefGoogle Scholar
  20. 20.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature 391, 775 (1998)CrossRefGoogle Scholar
  21. 21.
    K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Science 297, 72 (2002)CrossRefGoogle Scholar
  22. 22.
    S. Berchmans, R.G. Nirmal, G. Prabaharan, S. Madhu, V. Yegnaraman, J. Colloid Interface Sci. 303, 604 (2006)CrossRefGoogle Scholar
  23. 23.
    L.B. Kong, M. Lu, M.K. Li, H.L. Li, X.Y. Guo, J. Mater. Sci. Lett. 22, 701 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Graff, D. Wagner, H. Ditlbacher, U. Kreibig, Eur. Phys. J. D 34, 263 (2005)CrossRefGoogle Scholar
  25. 25.
    D.V. Goia, J. Mater. Chem. 14, 451 (2004)CrossRefGoogle Scholar
  26. 26.
    W.C. Zhang, X.L. Wu, H.T. Chen, Y.J. Gao, J. Zhu, G.S. Huang, P.K. Chu, Acta Mater. 56, 2508 (2008)CrossRefGoogle Scholar
  27. 27.
    L.D. Marks, Rep. Prog. Phys. 57, 603 (1994)CrossRefGoogle Scholar
  28. 28.
    K.E. Korte, E. Skrabalak, Y.N. Xia, J. Mater. Chem. 18, 437 (2008)CrossRefGoogle Scholar
  29. 29.
    Y.G. Sun, B. Mayers, T. Herricks, Y.N. Xia, Nano Lett. 3, 955 (2003)CrossRefGoogle Scholar
  30. 30.
    F. Buatier de Mongeot, A. Cupilillo, V. Valbusa, M. Rocca, Chem. Phys. Lett. 270, 345 (1997)CrossRefGoogle Scholar
  31. 31.
    Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie. J. Phys. Chem. B 108, 12877 (2004)CrossRefGoogle Scholar
  32. 32.
    B.J. Wiley, Y.G. Sun, B. Mayers, Y.N. Xia, Chem. Eur. J. 11, 454 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dapeng Chen
    • 1
  • Xueliang Qiao
    • 1
  • Xiaolin Qiu
    • 2
  • Jianguo Chen
    • 1
  • Renzhi Jiang
    • 1
  1. 1.State Key Laboratory of Plastic Forming Simulation and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Nanomaterials Research Center, Nanchang Institute of TechnologyNanchangPeople’s Republic of China

Personalised recommendations