Dielectric and piezoelectric properties of MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 lead-free ceramics

  • Dunmin Lin
  • Qiaoji Zheng
  • K. W. Kwok
  • Chenggang Xu
  • Chun Yang


Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.



This work was supported by the project of Education Department of Sichuan Province (08ZA047), and Science and Technology Bureau of Sichuan Province (09ZQ026-059)


  1. 1.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45(5), 209 (1962)CrossRefGoogle Scholar
  2. 2.
    L. Egerton, D.M. Dillom, J. Am. Ceram. Soc. 42(9), 438 (1959)CrossRefGoogle Scholar
  3. 3.
    Z.S. Ahn, W.A. Schulze, J. Am. Ceram. Soc. 70(1), C18 (1987)CrossRefGoogle Scholar
  4. 4.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter. Appl. Phys. Lett. 87, 182905 (2005)CrossRefADSGoogle Scholar
  5. 5.
    G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S. Zhang, R.T. Shrout, Appl. Phys. Lett. 88, 212908 (2006)CrossRefADSGoogle Scholar
  6. 6.
    D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 101, 074111 (2007)CrossRefADSGoogle Scholar
  7. 7.
    H.Y. Park, C.W. Ahn, H.C. Song, J.H. Lee, S. Nahm, K. Uchino, H.G. Lee, H.J. Lee, Appl. Phys. Lett. 89, 062906 (2006)CrossRefADSGoogle Scholar
  8. 8.
    R. Zuo, C. Ye, Appl. Phys. Lett. 91, 062916 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefADSGoogle Scholar
  10. 10.
    R. Zuo, X. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamur, Nature 432, 84 (2004)CrossRefPubMedADSGoogle Scholar
  12. 12.
    M. Matsubara, K. Kikuta, S. Hirano, J. Appl. Phys. 97, 114105 (2005)CrossRefADSGoogle Scholar
  13. 13.
    H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, J. Am. Ceram. Soc. 89, 1951 (2006)CrossRefGoogle Scholar
  14. 14.
    D.J. Singh, M. Ghita, S.V. Halilov, M. Fornari, J. Phys. IV 128, 47 (2004)Google Scholar
  15. 15.
    C. Galassi, E. Roncari, C. Capiani, F. Craciun, J. Eur. Ceram. Soc. 19(6–7), 1237 (1999)CrossRefGoogle Scholar
  16. 16.
    C.S. Yu, H.L. Hsieh, J. Eur. Ceram. Soc. 25(12), 2425 (2005)CrossRefGoogle Scholar
  17. 17.
    Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Mater. Chem. Phys. 94, 328 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Karthik, N. Ravishankar, K.B.R. Varma, Appl. Phys. Lett. 89, 042905 (2006)CrossRefADSGoogle Scholar
  19. 19.
    K. Uchino, S. Nomura, L.E. Cross, S.J. Tang, R.E. Newnham, J. Appl. Phys. 51, 1142 (1980)CrossRefADSGoogle Scholar
  20. 20.
    Y. Guo, K. Kakimoto, H. Ohsato, Solid State Commun. 129, 279 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dunmin Lin
    • 1
  • Qiaoji Zheng
    • 1
  • K. W. Kwok
    • 2
  • Chenggang Xu
    • 1
  • Chun Yang
    • 1
  1. 1.College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan ProvinceSichuan Normal UniversityChengduPeople’s Republic of China
  2. 2.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityKowloon, Hong KongChina

Personalised recommendations