Electrochemical deposition of CuInTe2 layers for applications in thin film solar cells

  • G. E. A. Muftah
  • A. P. Samantilleke
  • P. D. Warren
  • S. N. Heavens
  • I. M. Dharmadasa


Copper indium ditelluride (CuInTe2) has been electrochemically deposited from aqueous solution. Cyclic voltammetry analyses were used to determine suitable deposition parameters. As measured by Tallysurf and gravimetric techniques, the thickness of films deposited over a period of 3 h was found to be ~1.5 μm. X-ray diffraction, optical absorption and scanning electron microscopy have been used to investigate the bulk structure, energy bandgap and surface morphology of the material layers respectively. It was found that the material layers have polycrystalline chalcopyrite structure and bandgaps varied between 1.05 and 1.30 eV. Current-voltage characteristics of the CuInTe2/electrolyte, solid/liquid junctions were measured under dark and illuminated conditions. The layers were found to be photo active and p-type in electrical conduction.



Gavin Tolan and Jayne Wellings are thanked for their contributions during this research programme. One of the authors, Gaafar E.A. Muftah, wishes to thank Libyan Education Ministry for financial support for this research programme.


  1. 1.
    K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda. Prog. Photovolt. Res 11, 225–230 (2003). doi: 10.1002/pip.494 CrossRefGoogle Scholar
  2. 2.
    T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, T. Mise, Sol. Energy 77, 739–747 (2004). doi: 10.1016/j.solener.2004.08.010 CrossRefGoogle Scholar
  3. 3.
    I.M. Dharmadasa, J. Haigh, J. Electrochem. Soc 153(1), G47–G52 (2006). doi: 10.1149/1.2128120 CrossRefGoogle Scholar
  4. 4.
    Y. Sugimoto, L.M. Peter, J. Electroanal. Chem. 386, 183–188 (1995). doi: 10.1016/0022-0728(94)03794-4 CrossRefGoogle Scholar
  5. 5.
    C.D. Lokhande, S.H. Pawar, J. Phys. D. Appl. Phys. (Berl.) 20, 1213–1214 (1987)CrossRefADSGoogle Scholar
  6. 6.
    T. Ishizaki, N. Saito, A. Fuwa, Surf. Coat. Tech. 182, 156–160 (2004). doi: 10.1016/j.surfcoat.2003.07.004 CrossRefGoogle Scholar
  7. 7.
    A. Vijayakumar, T. Du, K.B. Sundaram, Appl. Surf. Sci. 242, 168–176 (2005). doi: 10.1016/j.apsusc.2004.08.027 CrossRefADSGoogle Scholar
  8. 8.
    J.L. Orts, R. Diaz, P. Herrasti, F. Rueda, E. Fatas, Sol. Energy Mater. Sol. Cells 91, 621–628 (2007). doi: 10.1016/j.solmat.2006.11.014 CrossRefGoogle Scholar
  9. 9.
    K. Ramanathan, G. Teeter, J.C. Keane, R. Noufi, Thin. Solid. Films 480–481, 499–502 (2005). doi: 10.1016/j.tsf.2004.11.050 CrossRefGoogle Scholar
  10. 10.
    David R. Lide, Handbook of chemistry & physics, 71st edn, (1990–1991), Table (12–59)Google Scholar
  11. 11.
    G. Marin, S.M. Wasim, G. Sanchez Perez, P. Bocaranda, A.E. Mora, J. Electron. Mater 27, 1351–1357 (1998). doi: 10.1007/s11664-998-0096-1 CrossRefADSGoogle Scholar
  12. 12.
    Y. Mirovsky, D. Cahen, G. Hodes, R. Tenne, W. Giriat, Sol. Energy. Mater 4, 169 (1981). doi: 10.1016/0165-1633(81)90040-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. E. A. Muftah
    • 1
  • A. P. Samantilleke
    • 1
  • P. D. Warren
    • 2
  • S. N. Heavens
    • 3
  • I. M. Dharmadasa
    • 1
  1. 1.Solar Energy Group, Materials & Engineering Research Institute, Faculty of Arts, Computing, Engineering and SciencesSheffield Hallam UniversitySheffieldUK
  2. 2.Pilkington European Technology CentreLancashireUK
  3. 3.Ionotec Ltd.RuncornUK

Personalised recommendations