Microwave ferrites, part 2: passive components and electrical tuning

Review

Abstract

Low-loss ferrimagnets are the basis for passive microwave components operating in a wide range of frequencies. The magnetic resonances of passive components can be tuned using static magnetic fields over a wide frequency range, where higher operation frequencies require higher magnetic bias unless hexaferrites with large crystalline anisotropy are used. However, electrical tuning of the operation frequency, which can be achieved if the magnetic property of the material is sensitive to the field through magnetoelectric (ME) coupling, is more attractive than magnetic tuning. In the so-called multiferroic materials such as TbMnO3, TbMn2O5, BiFeO3, Cr2O3, and BiMnO3, which possess simultaneously both the ferroelectric and ferromagnetic properties, ME coupling is very small to be practical. The ME effect, however, can be significantly enhanced in the case of bilayer/multilayer structures with one constituent highly piezoelectric, such as Pb(Zr1 − xTix)O3 (PZT) and 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT), and the other highly ferromagnetic, opening up the possibility for a whole host of tunable microwave passive components. In such structures, the strain induced by the electric field applied across the piezoelectric material is transferred mechanically to the magnetic material, which then experiences a change in its magnetic permeability through magnetostriction. Additionally, electrical tuning coupled with high dielectric permittivity and magnetic susceptibility could lead to miniature microwave components and/or make operation at very high frequencies possible without the need for increased size and weight common in conventional approaches. In Part 1 of this review, fundamentals of ferrite materials, interconnecting chemical, structural, and magnetic properties with the treatment of various types of ferrites used in microwave systems are discussed. Part 2 discusses the basis for coupling between electrical and magnetic properties for highly attractive electrical tuning of passive components by combining piezoelectric materials with ferrites and various device applications of ferrites.

References

  1. 1.
    Ü. Özgür, Y. Alivov, and H. Morkoç, J. Mater. Sci.: Mater. Electron. (2009). doi:10.1007/s10854-009-9923-2
  2. 2.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008). doi:10.1063/1.2836410 ADSCrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). doi:10.1038/nature05023 PubMedADSCrossRefGoogle Scholar
  4. 4.
    M. Fiebig, J. Phys. D 38, R123 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Hou, N. Bloembergen, Phys. Rev. 138, A1218 (1965). doi:10.1103/PhysRev.138.A1218 ADSCrossRefGoogle Scholar
  6. 6.
    R.E. Cohen, Nature 358, 136 (1992). doi:10.1038/358136a0 ADSCrossRefGoogle Scholar
  7. 7.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000). doi:10.1021/jp000114x CrossRefGoogle Scholar
  8. 8.
    K. Lefki, G.J.M. Dormans, J. Appl. Phys. 76, 1764 (1994). doi:10.1063/1.357693 ADSCrossRefGoogle Scholar
  9. 9.
    Etienne du Trémolet de Lacheisserie, Magnetostriction: Theory and Applications of Magnetoelasticity (CRC Press, Boca Raton, 1993), Chap. 2Google Scholar
  10. 10.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949). doi:10.1103/RevModPhys.21.541 ADSCrossRefGoogle Scholar
  11. 11.
    R.A. McCurie, Ferromagnetic Materials, Structure and Properties (Academic Press, San Diego, 1994), p. 91Google Scholar
  12. 12.
    G. Harshé, J.P. Dougherty, R.E. Newnham, Int. J. Appl. Electromag. Mater. 4, 145 (1993)Google Scholar
  13. 13.
    J. Van Den Boomgard, A.M.J.G. Van Run, J. Van Suchetelen, Ferroelectrics 10, 295 (1976)Google Scholar
  14. 14.
    A.S. Zubkov, Elektrichestvo 10, 77 (1978)Google Scholar
  15. 15.
    A.L. Kholkin, E.K. Akdogan, A. Safari, P.-F. Chauvy, N. Setter, J. Appl. Phys. 89, 8066 (2001). doi:10.1063/1.1371002 ADSCrossRefGoogle Scholar
  16. 16.
    S. Zhang, L. Lebrun, D.-Y. Jeong, C.A. Randall, Q. Zhang, T.R. Shrout, J. Appl. Phys. 93, 9257 (2003). doi:10.1063/1.1571966 ADSCrossRefGoogle Scholar
  17. 17.
    G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Phys. Rev. B 65, 134402 (2002). doi:10.1103/PhysRevB.65.134402 ADSCrossRefGoogle Scholar
  18. 18.
    E.I. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959)Google Scholar
  19. 19.
    G.T. Rado, V.J. Folen, Phys. Rev. Lett. 7, 310 (1961). doi:10.1103/PhysRevLett.7.310 ADSCrossRefGoogle Scholar
  20. 20.
    S. Foner, M. Hanabusa, J. Appl. Phys. 34, 1246 (1963). doi:10.1063/1.1729456 ADSCrossRefGoogle Scholar
  21. 21.
    D.N. Astrov, Sov. Phys. JETP 11, 708 (1961)Google Scholar
  22. 22.
    D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)Google Scholar
  23. 23.
    V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rev. Lett. 6, 607 (1961). doi:10.1103/PhysRevLett.6.607 ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Rivera, Ferroelectrics 161, 165 (1994). doi:10.1080/00150199408213357 CrossRefGoogle Scholar
  25. 25.
    B.I. Al’shin, D.N. Astrov, Sov. Phys. JETP 17, 809 (1963)Google Scholar
  26. 26.
    G.T. Rado, Phys. Rev. Lett. 13, 335 (1964). doi:10.1103/PhysRevLett.13.335 ADSCrossRefGoogle Scholar
  27. 27.
    R.P. Santoro, D.J. Segal, R.E. Newnham, J. Phys. Chem. Solids 27, 1192 (1966). doi:10.1016/0022-3697(66)90097-7 ADSCrossRefGoogle Scholar
  28. 28.
    I. Kornev, M. Bichurin, J.-P. Rivera, S. Gentil, A.G.M. Jansen, H. Schmid, P. Wyder, Phys. Rev. B 62, 12247 (2000). doi:10.1103/PhysRevB.62.12247 ADSCrossRefGoogle Scholar
  29. 29.
    D. Vaknin, J.L. Zarestky, J.P. Rivera, H. Schmid, Phys. Rev. Lett. 92, 207201 (2004). doi:10.1103/PhysRevLett.92.207201 PubMedADSCrossRefGoogle Scholar
  30. 30.
    J.F. Scott, Phys. Rev. B 16, 2329 (1977). doi:0.1103/PhysRevB.16.2329 ADSCrossRefGoogle Scholar
  31. 31.
    B. Ponomarev, S.A. Ivanov, F.Y. Popov, V.D. Negrii, B.S. Redkin, Ferroelectrics 161, 43 (1994). doi:10.1080/00150199408213350 CrossRefGoogle Scholar
  32. 32.
    E. Ascher, H. Rieder, H. Schmid, H. Stössel, J. Appl. Phys. 37, 1404 (1966). doi:10.1063/1.1708493 ADSCrossRefGoogle Scholar
  33. 33.
    G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982). doi:10.1070/PU1982v025n07ABEH004570 ADSCrossRefGoogle Scholar
  34. 34.
    T. Watanabe, K. Kohn, Phase Transit. 15, 57 (1989). doi:10.1080/01411598908206837 CrossRefGoogle Scholar
  35. 35.
    G.A. Smolenskii, A.I. Agranovskaya, V.A. Isupov, Sov. Phys. Solid State 1, 442 (1959)Google Scholar
  36. 36.
    H. Tsujino, K. Kohn, Solid State Commun. 83, 639 (1992). doi:10.1016/0038-1098(92)90666-W ADSCrossRefGoogle Scholar
  37. 37.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392 (2004). doi:10.1038/nature02572 PubMedADSCrossRefGoogle Scholar
  38. 38.
    T. Kimura, G. Lawes, A.P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005). doi:10.1103/PhysRevLett.94.137201 PubMedADSCrossRefGoogle Scholar
  39. 39.
    M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002). doi:10.1038/nature01077 PubMedADSCrossRefGoogle Scholar
  40. 40.
    V. Laukhin, V. Skumryev, X. Martí, D. Hrabovsky, F. Sánchez, M.V. García-Cuenca, C. Ferrater, M. Varela, U. Lüders, J.F. Bobo, J. Fontcuberta, Phys. Rev. Lett. 97, 227201 (2006). doi:10.1103/PhysRevLett.97.227201 PubMedADSCrossRefGoogle Scholar
  41. 41.
    A. Moreira dos Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Solid State Commun. 122, 49 (2002)Google Scholar
  42. 42.
    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, T. Yokura, Phys. Rev. B 67, 180401 (2003). doi:10.1103/PhysRevB.67.180401 ADSCrossRefGoogle Scholar
  43. 43.
    J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364 (2005). doi:10.1038/nature03348 PubMedADSCrossRefGoogle Scholar
  44. 44.
    T.H. O’Dell, Philos. Mag. 16, 487 (1967). doi:10.1080/14786436708220859 ADSCrossRefGoogle Scholar
  45. 45.
    B.B. Krichevtsov, V.V. Pavlov, R.V. Pasarev, A.G. Selitsky, Ferroelectrics 161, 65 (1994)Google Scholar
  46. 46.
    J.P. Rivera, Ferroelectrics 161, 147 (1994). doi:10.1080/00150199408213357 CrossRefGoogle Scholar
  47. 47.
    B.B. Krichevtsov, V.V. Pavlov, R.V. Pisarev, JETP Lett. 49, 535 (1989)ADSGoogle Scholar
  48. 48.
    G.T. Rado, J.M. Ferrari, W.G. Maisch, Phys. Rev. B 29, 4041 (1984). doi:10.1103/PhysRevB.29.4041 ADSCrossRefGoogle Scholar
  49. 49.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003). doi:10.1126/science.1080615 PubMedADSCrossRefGoogle Scholar
  50. 50.
    Y.F. Popov, A.M. Kadomtseva, S.S. Krotov, D.V. Belov, G.P. Vorob’ev, P.N. Makhov, A.K. Zvezdin, Low Temp. Phys. 27, 478 (2001). doi:10.1063/1.1382990 ADSCrossRefGoogle Scholar
  51. 51.
    A.K. Zvezdin, A.M. Kadomtseva, S.S. Krotov, A.P. Pyatakov, Y.F. Popov, G.P. Vorob’ev, J. Magn. Magn. Mater. 300, 224 (2006). doi:10.1016/j.jmmm.2005.10.068 ADSCrossRefGoogle Scholar
  52. 52.
    W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203 (2005). doi:10.1126/science.1105422 PubMedCrossRefGoogle Scholar
  53. 53.
    S. Dong, J. Zhai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 89, 122903 (2006). doi:10.1063/1.2355459 ADSCrossRefGoogle Scholar
  54. 54.
    S. Dong, J. Zhai, F. Bai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005). doi:10.1063/1.2007868 ADSCrossRefGoogle Scholar
  55. 55.
    V. Corral-Flores, D. Bueno-Baques, D. Carrillo-Flores, J.A. Matutes-Aquino, J. Appl. Phys. 99, 08J503 (2006)CrossRefGoogle Scholar
  56. 56.
    S. Stein, M. Wuttig, D. Viehland, E. Quandt, J. Appl. Phys. 97, 10Q301 (2005)CrossRefGoogle Scholar
  57. 57.
    T. Wu, M.A. Zurbuchen, S. Saha, R.-V. Wang, S.K. Streiffer, J.F. Mitchell, Phys. Rev. B 73, 134416 (2006). doi:10.1103/PhysRevB.73.134416 ADSCrossRefGoogle Scholar
  58. 58.
    G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Phys. Rev. B 64, 214408 (2001). doi:10.1103/PhysRevB.64.214408 ADSCrossRefGoogle Scholar
  59. 59.
    N. Zhang, T. Dekai Liang, Schneider, G. Srinivasan, J. Appl. Phys. 101, 083902 (2007). doi:10.1063/1.2717131 ADSCrossRefGoogle Scholar
  60. 60.
    G. Srinivasan, C.P. De Vreugd, V.M. Laletin, N. Paddubnaya, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Phys. Rev. B 71, 184423 (2005). doi:10.1103/PhysRevB.71.184423 ADSCrossRefGoogle Scholar
  61. 61.
    J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys. 40, 4948 (2001). doi:10.1143/JJAP.40.4948 ADSCrossRefGoogle Scholar
  62. 62.
    H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, Y.S. Oh, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, J.-G. Park, Appl. Phys. Lett. 89, 102907 (2006). doi:10.1063/1.2338766 ADSCrossRefGoogle Scholar
  63. 63.
    J. Zhai, N. Cai, Z. Shi, Y. Lin, C.-W. Nan, J. Phys. D 37, 823 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    R.S. Devan, B.K. Chougule, J. Appl. Phys. 101, 014109 (2007). doi:10.1063/1.2404773 ADSCrossRefGoogle Scholar
  65. 65.
    J.-P. Zhou, H.-C. He, Z. Shi, G. Liu, C.-W. Nan, J. Appl. Phys. 100, 094106 (2006). doi:10.1063/1.2358191 ADSCrossRefGoogle Scholar
  66. 66.
    Y. Jia, S.W. Or, J. Wang, H.L.W. Chan, X. Zhao, H. Luo, J. Appl. Phys. 101, 104103 (2007). doi:10.1063/1.2732420 ADSCrossRefGoogle Scholar
  67. 67.
    S. Dong, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1236 (2003). doi:10.1109/TUFFC.2003.1244738 PubMedCrossRefGoogle Scholar
  68. 68.
    J.G. Wan, J.M. Liu, H.L.W. Chan, C.L. Choy, G.H. Wang, C.W. Nan, J. Appl. Phys. 93, 9916 (2003). doi:10.1063/1.1577404 ADSCrossRefGoogle Scholar
  69. 69.
    M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95, 8069 (2004). doi:10.1063/1.1739531 ADSCrossRefGoogle Scholar
  70. 70.
    S. Dong, J. Cheng, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 4812 (2003). doi:10.1063/1.1631756 ADSCrossRefGoogle Scholar
  71. 71.
    M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 132408 (2003). doi:10.1103/PhysRevB.68.132408 ADSCrossRefGoogle Scholar
  72. 72.
    N. Zhang, W. Ke, T. Schneider, G. Srinivasan, J. Phys. Condens. Matter 18, 11013 (2006). doi:10.1088/0953-8984/18/48/029 ADSCrossRefGoogle Scholar
  73. 73.
    C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Phys. Rev. B 75, 054408 (2007). doi:10.1103/PhysRevB.75.054408 ADSCrossRefGoogle Scholar
  74. 74.
    A.M.J.G. Vanrun, D.R. Terrell, J.H. Scholing, J. Mater. Sci. 9, 1710 (1974). doi:10.1007/BF00540771 ADSCrossRefGoogle Scholar
  75. 75.
    J. van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978). doi:10.1007/BF00553210 ADSCrossRefGoogle Scholar
  76. 76.
    N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Phys. Rev. B 68, 224103 (2003). doi:10.1103/PhysRevB.68.224103 ADSCrossRefGoogle Scholar
  77. 77.
    H.S. Shastri, G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko, Phys. Rev. B 70, 064416 (2004). doi:10.1103/PhysRevB.70.064416 ADSCrossRefGoogle Scholar
  78. 78.
    Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006). doi:10.1063/1.2191950 ADSCrossRefGoogle Scholar
  79. 79.
    S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004). doi:10.1063/1.1791732 ADSCrossRefGoogle Scholar
  80. 80.
    U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Appl. Phys., A Mater. Sci. Process. 78, 33 (2004). doi:10.1007/s00339-003-2293-3 ADSCrossRefGoogle Scholar
  81. 81.
    J.G. Wan, Z.Y. Li, Y. Wang, M. Zeng, G.H. Wang, J.M. Liu, Appl. Phys. Lett. 86, 202504 (2005). doi:10.1063/1.1935040 ADSCrossRefGoogle Scholar
  82. 82.
    P. Murugavel, P. Padhan, W. Prellier, Appl. Phys. Lett. 85, 4992 (2004). doi:10.1063/1.1825075 ADSCrossRefGoogle Scholar
  83. 83.
    S. Srinath, N.A. Frey, R. Heindl, H. Srikanth, K.R. Coffey, N.J. Dudney, J. Appl. Phys. 97, 10J115 (2005)CrossRefGoogle Scholar
  84. 84.
    M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gosele, Science 296, 1997 (2002). doi:10.1126/science.1071210 PubMedCrossRefGoogle Scholar
  85. 85.
    Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83, 440 (2003). doi:10.1063/1.1592013 ADSCrossRefGoogle Scholar
  86. 86.
    B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Chem. Mater. 14, 480 (2002). doi:10.1021/cm010998c CrossRefGoogle Scholar
  87. 87.
    J. Ryu, S. Priya, K. Uchino, H.E. Kim, J. Electroceramics 8, 107 (2002). doi:10.1023/A:1020599728432 CrossRefGoogle Scholar
  88. 88.
    J. van den Boomgard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974). doi:10.1007/BF00540770 ADSCrossRefGoogle Scholar
  89. 89.
    J. Van den Boomgaard, A.M.J.G. van Run, J. van Suchtelen, Ferroelectrics 14, 727 (1976)Google Scholar
  90. 90.
    B. Wul, I.M. Goldman, Academie des Sciences de l’URSS—Comptes Rendus 51, 21 (1946)Google Scholar
  91. 91.
    N. Izyumskaya, Y. Alivov, S.-J. Cho, H. Morkoç, H. Lee, Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007). doi:10.1080/10408430701707347 CrossRefGoogle Scholar
  92. 92.
    E.C. Subbaro, Phys. Rev. 122, 804 (1961). doi:10.1103/PhysRev.122.804 ADSCrossRefGoogle Scholar
  93. 93.
    P.H. Fang, C. Robbins, F. Forrat, Academie des Sciences—Comptes Rendus 252, 683 (1962)Google Scholar
  94. 94.
    Q.M. Zhang, V. Bharti, G. Kavarnos, M. Schwartz, “Poly (Vinylidene Fluoride) (PVDF) and its Copolymers”, Encyclopedia of Smart Materials, vol. 1–2 (Wiley, New York, 2002), pp. 807–825Google Scholar
  95. 95.
    O. Kenji, O. Hiroji, K. Keiko, J. Appl. Phys. 81, 2760 (1996)Google Scholar
  96. 96.
    S.-E. Park, T.E. Shrout, J. Appl. Phys. 82, 1804 (1997). doi:10.1063/1.365983 ADSCrossRefGoogle Scholar
  97. 97.
    G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, V.F. Meshcheryakov, Y.K. Fetisov, Appl. Phys. A 78, 721 (2004). doi:10.1007/s00339-002-1987-2 ADSCrossRefGoogle Scholar
  98. 98.
    S.-K. Kim, J.-W. Lee, S.-C. Shin, H.W. Song, C.H. Lee, K. No, J. Magn. Magn. Mater. 267, 127 (2003). doi:10.1016/S0304-8853(03)00297-X ADSCrossRefGoogle Scholar
  99. 99.
    A.E. Clark, Magnetostrictive rare earth-Fe2 compounds, in Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, vol. 1, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), pp. 531–589Google Scholar
  100. 100.
    A.E. Clark, J.R. Cullen, K. Sato, Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds. AIP Conf. Proc. 24, 670 (1974). doi:10.1063/1.30227 ADSCrossRefGoogle Scholar
  101. 101.
    E.A. Lindgren, S. Haroush, J.C. Poret, A.D. Mazzatesta, M. Rosen, M. Rosen, M. Wun-Fogle, J.B. Restorff, A.E. Clark, J.F. Lindberg, J. Appl. Phys. 83, 7282 (1998). doi:10.1063/1.367618 ADSCrossRefGoogle Scholar
  102. 102.
    S.F. Fischer, M. Kelsch, H. Kronmueller, J. Magn. Magn. Mater. 195, 545 (1999). doi:10.1016/S0304-8853(99)00321-2 ADSCrossRefGoogle Scholar
  103. 103.
    D.C. Jiles, J.B. Thoelke, Phys. Stat. Solidi A 147, 535 (1995). doi:10.1002/pssa.2211470224 CrossRefGoogle Scholar
  104. 104.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev. B 67, 014418 (2003). doi:10.1103/PhysRevB.67.014418 ADSCrossRefGoogle Scholar
  105. 105.
    M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002). doi:10.1103/PhysRevB.66.134404 ADSCrossRefGoogle Scholar
  106. 106.
    M.I. Bichurin, R.V. Petrov, Y.V. Kiliba, Ferroelectrics 204, 311 (1997). doi:10.1080/00150199708222211 CrossRefGoogle Scholar
  107. 107.
    C.S. Tsai, J. Su, Appl. Phys. Lett. 74, 2079 (1999). doi:10.1063/1.123763 ADSCrossRefGoogle Scholar
  108. 108.
    V.E. Demidov, B.A. Kalinikos, S.F. Karmanenko, A.A. Semenov, P. Edenhofer, IEEE Trans. Microw. Theory Tech. 51, 2090 (2003). doi:10.1109/TMTT.2003.817461 CrossRefGoogle Scholar
  109. 109.
    G. Srinivasan, R. Hayes, M.I. Bichurin, Solid State Commun. 128, 261 (2003). doi:10.1016/S0038-1098(03)00727-0 ADSCrossRefGoogle Scholar
  110. 110.
    G. Srinivasan, I.V. Zavislyak, A.S. Tatarenko, Appl. Phys. Lett. 89, 152508 (2006). doi:10.1063/1.2360901 ADSCrossRefGoogle Scholar
  111. 111.
    R.K. Zheng, Y. Wang, H.L.W. Chan, C.L. Choy, H.S. Luo, Appl. Phys. Lett. 90, 152904 (2007). doi:10.1063/1.2721399 ADSCrossRefGoogle Scholar
  112. 112.
    Y.G. Ma, W.N. Cheng, M. Ning, C.K. Ong, Appl. Phys. Lett. 90, 152911 (2007). doi:10.1063/1.2723645 ADSCrossRefGoogle Scholar
  113. 113.
    M.K. Lee, T.K. Nath, C.B. Eom, M.C. Smoak, F. Tsui, Appl. Phys. Lett. 77, 3547 (2000). doi:10.1063/1.1328762 ADSCrossRefGoogle Scholar
  114. 114.
    J. Das, B.A. Kalinikos, A.R. Barman, C.E. Patton, Appl. Phys. Lett. 91, 172516 (2007). doi:10.1063/1.2802577 ADSCrossRefGoogle Scholar
  115. 115.
    D.A. Filippov, M.I. Bichurin, V.M. Petrov, V.M. Laletin, G. Srinivasan, Phys. Solid State 46, 1674 (2004). doi:10.1134/1.1799186 ADSCrossRefGoogle Scholar
  116. 116.
    D.A. Filippov, Phys. Solid State 47, 1118 (2005). doi:10.1134/1.1946866 ADSCrossRefGoogle Scholar
  117. 117.
    U. Laletin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Appl. Phys. Lett. 87, 222507 (2005). doi:10.1063/1.2137450 ADSCrossRefGoogle Scholar
  118. 118.
    M.I. Bichurin, V.M. Petrov, O.V. Ryabkov, S.V. Averkin, G. Srinivasan, Phys. Rev. B 72, 060408 (2005). doi:10.1103/PhysRevB.72.060408 ADSCrossRefGoogle Scholar
  119. 119.
    G. Srinivasan, C.P. De Vreugd, V.M. Laletin, M. Paddubnaya, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Phys. Rev. B 71, 1844423 (2005). doi:10.1103/PhysRevB.71.184423 ADSCrossRefGoogle Scholar
  120. 120.
    K. Koombua, R.M. Pidaparti, Ü. Özgür, H. Morkoç (unpublished)Google Scholar
  121. 121.
    H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661 (2004). doi:10.1126/science.1094207 PubMedADSCrossRefGoogle Scholar
  122. 122.
    F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S.Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, R. Ramesh, Nano Lett. 5, 1793 (2005). doi:10.1021/nl051406i PubMedADSCrossRefGoogle Scholar
  123. 123.
    C.-W. Nan, G. Liu, Y.H. Lin, H.D. Chen, Phys. Rev. Lett. 94, 197203 (2005). doi:10.1103/PhysRevLett.94.197203 PubMedADSCrossRefGoogle Scholar
  124. 124.
    M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun, Appl. Phys. Lett. 90, 152501 (2007). doi:10.1063/1.2722043 ADSCrossRefGoogle Scholar
  125. 125.
    J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, IEEE Trans. Microw. Theory Tech. 50, 721 (2002). doi:10.1109/22.989957 CrossRefGoogle Scholar
  126. 126.
    B.M. Lebed, V.D. Voronkov, in Proceedings of 26th European Microwave Conference, Prague, 1996, pp. 816–822Google Scholar
  127. 127.
    R. Glockler, Int. J. Infrared Millim. Waves 11, 101 (1990). doi:10.1007/BF01010509 ADSCrossRefGoogle Scholar
  128. 128.
    L.R. Adkins, H.I. Glass, R.L. Carter, C.K. Wai, J.M. Owens, J. Appl. Phys. 55, 2518 (1984). doi:10.1063/1.333714 ADSCrossRefGoogle Scholar
  129. 129.
    Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005). doi:10.1063/1.2037860 ADSCrossRefGoogle Scholar
  130. 130.
    F. Reggia, E.G. Spencer, Proc. IRE 45, 1510 (1957)CrossRefGoogle Scholar
  131. 131.
    R.F. Soohoo, IEEE Trans. Magn. 4, 118 (1968). doi:10.1109/TMAG.1968.1066207 ADSCrossRefGoogle Scholar
  132. 132.
    B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)Google Scholar
  133. 133.
    E.K.-N. Yung, R.S. Chen, K. Wu, D.X. Wang, IEEE Trans. Microw. Theory Tech. 46, 1721 (1998). doi:10.1109/22.734570 CrossRefGoogle Scholar
  134. 134.
    E.N. Skomal, IEEE Trans. Microw. Theory Tech. 11, 117 (1963). doi:10.1109/TMTT.1963.1125612 CrossRefGoogle Scholar
  135. 135.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005)Google Scholar
  136. 136.
    P. Shi, H. How, X. Zuo, S.D. Yoon, S.A. Oliver, C. Vittoria, IEEE Trans. Magn. 37, 2389 (2001). doi:10.1109/20.951181 ADSCrossRefGoogle Scholar
  137. 137.
    C.E. Fay, R.L. Comstock, IEEE Trans. Microw. Theory Tech. 13, 15 (1965). doi:10.1109/TMTT.1965.1125923 CrossRefGoogle Scholar
  138. 138.
    K. Okubo, M. Tsutsumi, IEEE MTT-S Int. Microw. Symp. Dig., 548–551 (2006) doi:10.1109/MWSYM.2006.249633
  139. 139.
    H. How, T.-M. Fang, C. Vittoria, IEEE Trans. Magn. 31, 997 (1995). doi:10.1109/20.364774 ADSCrossRefGoogle Scholar
  140. 140.
    R.A. Stern, R.W. Babbitt, U.S. Patent 4,749,966, 7 June 1988; U.S. Patent 4,754,237, 28 June 1988Google Scholar
  141. 141.
    P.S. Carter Jr, IEEE Trans. Microw. Theory Tech. 9, 252 (1961). doi:10.1109/TMTT.1961.1125316 CrossRefGoogle Scholar
  142. 142.
    H. Tanbakuchi, D. Nicholson, B. Kunz, W. Ishak, IEEE Trans. Magn. 25, 3248 (1989). doi:10.1109/20.42268 ADSCrossRefGoogle Scholar
  143. 143.
    D. Nicholson, IEEE MTT-S Int. Microw. Symp. Dig., 867–870 (1988)Google Scholar
  144. 144.
    J. Helszajn, YIG Resonators and Filters (Wiley, New York, 1985)Google Scholar
  145. 145.
    M. Lemke, W. Hoppe, W. Tolksdorf, F. Weltz, I.E.E.J. Microwaves. Opt. Acoust. 3, 253 (1979)ADSGoogle Scholar
  146. 146.
    M. Lemke, in Proceedings of 9th European Microwave Conference, 1979, pp. 617–620Google Scholar
  147. 147.
    B.N. Enander, Proc. IRE 44, 1421 (1956)CrossRefGoogle Scholar
  148. 148.
    D.M. Pozar, Proc. IEEE 80, 79 (1992). doi:10.1109/5.119568 ADSCrossRefGoogle Scholar
  149. 149.
    G.A. Deschamps, Microstrip microwave antennas, presented at the Third USAF Symposium on Antennas, 1953Google Scholar
  150. 150.
    K.R. Carver, J.W. Mink, IEEE Trans. Antenn. Propag. 29, 2 (1981). doi:10.1109/TAP.1981.1142523 ADSCrossRefGoogle Scholar
  151. 151.
    D.M. Pozar, IEEE Trans. Antenn. Propag. 40, 1084 (1992). doi:10.1109/8.166534 ADSCrossRefGoogle Scholar
  152. 152.
    A.D. Brown, J.L. Volakis, L.C. Kempel, Y.Y. Botros, IEEE Trans. Antenn. Propag. 47, 26 (1999). doi:10.1109/8.752980 ADSCrossRefGoogle Scholar
  153. 153.
    J.C. Batchelor, G. Classen, R.J. Langley, 10th International Conference on Antennas and Propagation, 14–17 April 1997, Conference publication no. 436, vol. 1, pp. 30–33Google Scholar
  154. 154.
    K.K. Tsang, R.J. Langley, Electron. Lett. 30, 1257 (1994). doi:10.1049/el:19940869 ADSCrossRefGoogle Scholar
  155. 155.
    E.F. Zaitsev, Y.P. Yavon, Y.A. Komarov, A.B. Guskov, A.Y. Kanivets, IEEE Trans. Antenn. Propag. 42, 304 (1994). doi:10.1109/8.280716 ADSCrossRefGoogle Scholar
  156. 156.
    H.Y.D. Yang, IEEE Trans. Antenn. Propag. 44, 1127 (1996). doi:10.1109/8.511821 ADSCrossRefGoogle Scholar
  157. 157.
    H. Maheri, M. Tsutsumi, N. Kumagai, IEEE Trans. Antenn. Propag. 36, 911 (1988). doi:10.1109/8.7195 ADSCrossRefGoogle Scholar
  158. 158.
    B.A. Kramer, S. Koulouridis, C.-C. Chen, J.L. Volakis, Antennas Wirel. Propag. Lett. 5, 32 (2006). doi:10.1109/LAWP.2005.863613 ADSCrossRefGoogle Scholar
  159. 159.
    G. Tyras, G. Held, IEEE Trans. Microw. Theory Tech. 6, 268 (1958). doi:10.1109/TMTT.1958.1124557 CrossRefGoogle Scholar
  160. 160.
    A.T. Adams, IEEE Trans. Antenn. Propag. 15, 342 (1967). doi:10.1109/TAP.1967.1138936 ADSCrossRefGoogle Scholar
  161. 161.
    D.J. Aggelakos, M.M. Korman, Proc. IRE 44, 1463 (1956)CrossRefGoogle Scholar
  162. 162.
    N. Das, S.K. Chowdhury, Electron. Lett. 16, 817 (1980). doi:10.1049/el:19800581 ADSCrossRefGoogle Scholar
  163. 163.
    N. Das, S.K. Chowdhury, J.S. Chatterjee, IEEE Trans. Antenn. Propag. 31, 188 (1983). doi:10.1109/TAP.1983.1142997 ADSCrossRefGoogle Scholar
  164. 164.
    S.N. Das, S.K. Chowdhury, IEEE Trans. Antenn. Propag. 30, 499 (1982). doi:10.1109/TAP.1982.1142816 ADSCrossRefGoogle Scholar
  165. 165.
    H. How, P. Rainville, F. Harackiewicz, C. Vittoria, Electron. Lett. 28, 1405 (1992). doi:10.1049/el:19920893 ADSCrossRefGoogle Scholar
  166. 166.
    D.S. Dunn, M.S. Telep, E.P. Augustin, Southcon/94, Conference records, March 1994, pp. 230–235Google Scholar
  167. 167.
    H. Chang, I. Takenchi, X.-D. Xiang, Appl. Phys. Lett. 74, 1165 (1999). doi:10.1063/1.123475 ADSCrossRefGoogle Scholar
  168. 168.
    M.I. Bichurin, I.A. Kornev, V.M. Petrov, A.S. Tatarenko, Y.V. Kiliba, G. Srinivasan, Phys. Rev. B 64, 094409 (2001). doi:10.1103/PhysRevB.64.094409 ADSCrossRefGoogle Scholar
  169. 169.
    A.B. Ustinov, G. Srinivasan, B.A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007). doi:10.1063/1.2432953 ADSCrossRefGoogle Scholar
  170. 170.
    A.A. Semenov, S.F. Karmanenko, V.E. Demidov, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Appl. Phys. Lett. 88, 033503 (2006). doi:10.1063/1.2166489 ADSCrossRefGoogle Scholar
  171. 171.
    A.V. Silhanek, W. Gillijns, V.V. Moshchalkov, B.Y. Zhu, J. Moonens, L.H.A. Leunissen, Appl. Phys. Lett. 89, 152507 (2006). doi:10.1063/1.2361172 ADSCrossRefGoogle Scholar
  172. 172.
    A.S. Tatarenko, G. Srinivasan, M.I. Bichurin, Appl. Phys. Lett. 88, 183507 (2006). doi:10.1063/1.2198111 ADSCrossRefGoogle Scholar
  173. 173.
    S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Science 276, 238 (1997). doi:10.1126/science.276.5310.238 PubMedCrossRefGoogle Scholar
  174. 174.
    T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, Z. Amlan Biswas, Chen, R.L. Greene, R. Ramesh, T. Venkatesan, A.J. Millis, Phys. Rev. Lett. 86, 5998 (2001). doi:10.1103/PhysRevLett.86.5998 PubMedADSCrossRefGoogle Scholar
  175. 175.
    S. Hontsu, H. Nishikawa, H. Nakai, J. Ishii, M. Nakamori, A. Fujimaki, Y. Noguchik, H. Tabata, T. Kawai, Supercond. Sci. Technol. 12, 836 (1999). doi:10.1088/0953-2048/12/11/343 ADSCrossRefGoogle Scholar
  176. 176.
    S.S. Gevorgian, D.I. Kaparkov, O.G. Vendik, I.E.E. Proc. Microw. Antennas Propag. 141, 501 (1994). doi:10.1049/ip-map:19941444 CrossRefGoogle Scholar
  177. 177.
    R.A. Chakalov, Z.G. Ivanov, Y.A. Boikov, P. Larsson, E. Carlsson, S. Gevorgian, T. Claeson, Physica C 308, 279 (1998). doi:10.1016/S0921-4534(98)00572-3 ADSCrossRefGoogle Scholar
  178. 178.
    G.F. Dionne, D.E. Oates, D.H. Temme, J.A. Weiss, IEEE Trans. Microw. Theory Tech. 44, 1361 (1996). doi:10.1109/22.508241 CrossRefGoogle Scholar
  179. 179.
    D.E. Oates, A. Piqué, K.S. Harshavardhan, J. Moses, F. Yang, G.F. Dionne, IEEE Trans. Appl. Supercond. 7, 2338 (1997). doi:10.1109/77.621708 CrossRefGoogle Scholar
  180. 180.
    S. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003). doi:10.1063/1.1611276 ADSCrossRefGoogle Scholar
  181. 181.
    S. Dong, J.F. Li, D. Viehland, J. Cheng, L.E. Cross, Appl. Phys. Lett. 85, 3534 (2004). doi:10.1063/1.1786631 ADSCrossRefGoogle Scholar
  182. 182.
    A.B. Ustinov, G. Srinivasan, Y.K. Fetisov, J. Appl. Phys. 103, 063901 (2008). doi:10.1063/1.2841200 ADSCrossRefGoogle Scholar
  183. 183.
    A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceramics 11, 5 (2003)CrossRefGoogle Scholar
  184. 184.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Tagantsev, D.V. Taylor, T. Yamda, S. Streiffer, J. Appl. Phys. 100, 051606 (2006). doi:10.1063/1.2336999 ADSCrossRefGoogle Scholar
  185. 185.
    S.-S. Kim, Y.-C. Yoon, K.-H. Kim, J. Electroceramics 10, 95 (2003)CrossRefGoogle Scholar
  186. 186.
    A.S. Tatarenko, V. Gheevarughese, G. Srinivasan, Electron. Lett. 42, 540 (2006). doi:10.1049/el:20060167 CrossRefGoogle Scholar
  187. 187.
    D.E. Oates, G.F. Dionne, IEEE MTT-S Int. Microw. Symp. Dig. 303–306 (1997)Google Scholar
  188. 188.
    A.A. Semenov, S.F. Karmanenko, B.A. Kalinikos, G. Srinivasan, A.N. Slavin, J.V. Mantese, Electron. Lett. 42, 641 (2006). doi:10.1049/el:20060164 CrossRefGoogle Scholar
  189. 189.
    S.W. Kirchoefer, J.M. Pond, H.S. Newman, W.-J. Kim, J.S. Horwitz, IEEE MTT-S Int. Microw. Symp. Dig. 3, 1359 (2000)Google Scholar
  190. 190.
    V.E. Demidov, B.A. Kalinikos, P. Edenhofer, J. Appl. Phys. 91, 10007 (2002). doi:10.1063/1.1475373 ADSCrossRefGoogle Scholar
  191. 191.
    B.A. Kalinikos, A.N. Slavin, J. Phys. C 19, 7013 (1986)ADSCrossRefGoogle Scholar
  192. 192.
    A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, Nature 373, 407 (1995). doi:10.1038/373407a0 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations