Microwave ferrites, part 1: fundamental properties

Review

Abstract

Ferrimagnets having low RF loss are used in passive microwave components such as isolators, circulators, phase shifters, and miniature antennas operating in a wide range of frequencies (1–100 GHz) and as magnetic recording media owing to their novel physical properties. Frequency tuning of these components has so far been obtained by external magnetic fields provided by a permanent magnet or by passing current through coils. However, for high frequency operation the permanent part of magnetic bias should be as high as possible, which requires large permanent magnets resulting in relatively large size and high cost microwave passive components. A promising approach to circumvent this problem is to use hexaferrites, such as BaFe12O19 and SrFe12O19, which have high effective internal magnetic anisotropy that also contributes to the permanent bias. Such a self-biased material remains magnetized even after removing the external applied magnetic field, and thus, may not even require an external permanent magnet. In garnet and spinel ferrites, such as Y3Fe5O12 (YIG) and MgFe2O4, however, the uniaxial anisotropy is much smaller, and one would need to apply huge magnetic fields to achieve such high frequencies. In Part 1 of this review of microwave ferrites a brief discussion of fundamentals of magnetism, particularly ferrimagnetism, and chemical, structural, and magnetic properties of ferrites of interest as they pertain to net magnetization, especially to self biasing, are presented. Operational principles of microwave passive components and electrical tuning of magnetization using magnetoelectric coupling are discussed in Part 2.

References

  1. 1.
    R.E. Collin, Foundations for Microwave Engineering, 2nd edn. (IEEE Press, New York, 2000)Google Scholar
  2. 2.
    K.H.J. Buschow, Rep. Prog. Phys. 54, 1123 (1991). doi:10.1088/0034-4885/54/9/001 ADSCrossRefGoogle Scholar
  3. 3.
    Ü. Özgür, Y. Alivov, H. Morkoç, Microwave Ferrites, Part 2: Passive components and electrical tuning, to be published in J. Mater. Sci.: Materials in Electronics (2009)Google Scholar
  4. 4.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)Google Scholar
  5. 5.
    J.S. Blakemore, Solid State Physics, 2nd edn. (Cambridge University Press, Cambridge, 1985)Google Scholar
  6. 6.
    Walter Beam, Electronics of Solids, McGraw Hill, New York, 1965Google Scholar
  7. 7.
    S.O. Kasap, Principles of Electronic Material and Devices, 3rd edn. (McGrawHill, New York, 2002)Google Scholar
  8. 8.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt-Reinhart-Winston, 1976Google Scholar
  9. 9.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949). doi:10.1103/RevModPhys.21.541 ADSCrossRefGoogle Scholar
  10. 10.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1998)Google Scholar
  11. 11.
    T. Mishima, U. S. Patent 2,2027,966; Ohm, 19, 353 (1932)Google Scholar
  12. 12.
    A.H. Geisler, Rev. Mod. Phys. 25, 316 (1953). doi:10.1103/RevModPhys.25.316 ADSCrossRefGoogle Scholar
  13. 13.
    S. Geller, M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957). doi:10.1016/0022-3697(57)90044-6 ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Gilleo, S. Geller, Phys. Rev. 110, 73 (1958). doi:10.1103/PhysRev.110.73 ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Went, G.W. Ratheneau, E.W. Gorter, G.W. Van Oosterhout, Philips Tech. Rev. 13, 194 (1952)Google Scholar
  16. 16.
    H.P.J. Wijn, Nature 170, 707 (1952). doi:10.1038/170707a0 ADSCrossRefGoogle Scholar
  17. 17.
    P.B. Braun, Nature 170, 708 (1952). doi:10.1038/170708a0 ADSCrossRefGoogle Scholar
  18. 18.
    G.H. Jonker, H.P. Wijn, P.B. Braun, Philips. Technol. Rev. 18, 145 (1956–1957)Google Scholar
  19. 19.
    D. Lisjak, M. Drofenik, J. Am. Ceram. Soc. 90, 3517 (2007). doi:10.1111/j.1551-2916.2007.01921.x CrossRefGoogle Scholar
  20. 20.
    H.L. Glass, Proc. IEEE 76, 151 (1988). doi:10.1109/5.4391 ADSCrossRefGoogle Scholar
  21. 21.
    Y. Chen, T. Sakai, T. Chen, S.D. Yoon, C. Vittoria, V.G. Harris, J. Appl. Phys. 100, 043907 (2006). doi:10.1063/1.2221527 ADSCrossRefGoogle Scholar
  22. 22.
    S.D. Yoon, C. Vittoria, J. Appl. Phys. 93, 8597 (2006). doi:10.1063/1.1557791 ADSCrossRefGoogle Scholar
  23. 23.
    F. Licci, G. Turilli, T. Besagni, IEEE Trans. Magn. 24, 593 (1988). doi:10.1109/20.43989 ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Wang, C.B. Ponton, I.R. Harris, J. Magn. Magn. Mater. 242–245, 1464 (2002). doi:10.1016/S0304-8853(01)01104-0 CrossRefGoogle Scholar
  25. 25.
    R.C. Pullar, A.K. Bhattacharya, J. Mater. Sci. 36, 4805 (2001). doi:10.1023/A:1017947625940 CrossRefGoogle Scholar
  26. 26.
    M. Obol, X. Zuo, C. Vittoria, J. Appl. Phys. 91, 7616 (2006). doi:10.1063/1.1446113 ADSCrossRefGoogle Scholar
  27. 27.
    Z.W. Li, L. Chen, C.K. Ong, J. Appl. Phys. 94, 5918 (2003). doi:10.1063/1.1618945 ADSCrossRefGoogle Scholar
  28. 28.
    K.N. Rozanov, Z.W. Li, L.F. Chen, M.Y. Koledintseva, J. Appl. Phys. 97, 013905 (2005). doi:10.1063/1.1827911 ADSCrossRefGoogle Scholar
  29. 29.
    X. Zuo, A. Yang, S.-D. Yoon, J.A. Christodoulides, V.G. Harris, C. Vittoria, Appl. Phys. Lett. 87, 152505 (2005). doi:10.1063/1.2084341 ADSCrossRefGoogle Scholar
  30. 30.
    K.P. Chae, J.G. Lee, W.K. Kim, Y.B. Lee, J. Magn. Magn. Mater. 248, 236 (2002). doi:10.1016/S0304-8853(02)00345-1 ADSCrossRefGoogle Scholar
  31. 31.
    J.-G. Lee, J.Y. Park, Y.-J. Oh, C.S. Kim, J. Appl. Phys. 84, 2801 (1998). doi:10.1063/1.368393 ADSCrossRefGoogle Scholar
  32. 32.
    L. Néel, J. Phys. Radium 9, 184 (1948). doi:10.1051/jphysrad:0194800905018400 CrossRefGoogle Scholar
  33. 33.
    L. Néel, Ann. Phys. 3, 137 (1948)Google Scholar
  34. 34.
    R.F. Soohoo, Theory and Application of Ferrites, Prentice-Hall, 1960Google Scholar
  35. 35.
    B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)Google Scholar
  36. 36.
    S.V. Vonsovskii (ed.), Ferromagnetic Resonance, Pergamon Press Ltd., Oxford 1966Google Scholar
  37. 37.
    A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves, CRC Press Inc., 1996Google Scholar
  38. 38.
    D. Polder, Philos. Mag. 40, 99 (1949)MATHGoogle Scholar
  39. 39.
    J.B. Goodenough, IEEE Trans. Magn. 38, 3398 (2002). doi:10.1109/TMAG.2002.802741 ADSCrossRefGoogle Scholar
  40. 40.
    N. Bloembergen, Phys. Rev. 572, 78 (1950)Google Scholar
  41. 41.
    N. Boembergen, Proc. IRE 44, 1259 (1956)CrossRefGoogle Scholar
  42. 42.
    L. Landau, E. Lifshitz, Z. Phyzik. Sowjetunion 8, 153 (1935)MATHGoogle Scholar
  43. 43.
    T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004). doi:10.1109/TMAG.2004.836740 ADSCrossRefGoogle Scholar
  44. 44.
    C. Kittel, Phys. Rev. 73, 155 (1953). doi:10.1103/PhysRev.73.155 ADSCrossRefGoogle Scholar
  45. 45.
    H. How, P. Shi, C. Vittoria, L.C. Kempel, K.D. Trott, J. Appl. Phys. 87, 4966 (2000). doi:10.1063/1.373217 ADSCrossRefGoogle Scholar
  46. 46.
    P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horwitz, J. Appl. Phys. 79, 6338 (1996). doi:10.1063/1.361991 ADSCrossRefGoogle Scholar
  47. 47.
    E. Schlömann, Proc. Conf. on Mag. and Mag. Materials. AIEE Spec. Publ. T-91, 600 (1957)Google Scholar
  48. 48.
    L. Landau, E. Lifshitz, Electrodynamics of Continuous Media, 2nd edn. (Pergamon Press, Oxford, 1984)Google Scholar
  49. 49.
    E.F. Schloemann, IEEE Trans. Magn. 34, 3830 (1998). doi:10.1109/20.728291 ADSCrossRefGoogle Scholar
  50. 50.
    J.R. Truedson, P. Kabos, K.D. McKinstry, C.E. Patton, J. Appl. Phys. 76, 432 (1994). doi:10.1063/1.357093 ADSCrossRefGoogle Scholar
  51. 51.
    M. Sparks, R. Loudon, C. Kittel, Phys. Rev. 122, 791 (1961). doi:10.1103/PhysRev.122.791 MATHADSCrossRefGoogle Scholar
  52. 52.
    M. Sparks, Ferromagnetic Relaxation Theory (McGraw- Hill, New York, 1964)Google Scholar
  53. 53.
    A.V. Nazarov, D. Ménard, J.J. Green, C.E. Patton, G.M. Argentina, H.J. Van Hook, J. Appl. Phys. 94, 7227 (2003). doi:10.1063/1.1622996 ADSCrossRefGoogle Scholar
  54. 54.
    C.E. Patton, Phys. Rev. 179, 352 (1969). doi:10.1103/PhysRev.179.352 ADSCrossRefGoogle Scholar
  55. 55.
    P.E. Seiden, J.G. Grunberg, J. Appl. Phys. 34, 1696 (1963). doi:10.1063/1.1702661 ADSCrossRefGoogle Scholar
  56. 56.
    N. Mo, Y.-Y. Song, C.E. Patton, J. Appl. Phys. 97, 093901 (2005). doi:10.1063/1.1887834 ADSCrossRefGoogle Scholar
  57. 57.
    N. Mo, J.J. Green, P. Krivosik, C.E. Patton, J. Appl. Phys. 101, 023914 (2007). doi:10.1063/1.2426379 ADSCrossRefGoogle Scholar
  58. 58.
    Y.-Y. Song, S. Kalarickal, C.E. Patton, J. Appl. Phys. 94, 5103 (2003). doi:10.1063/1.1608475 ADSCrossRefGoogle Scholar
  59. 59.
    Y.-Y. Song, M.S. Grinolds, P. Krivosik, C.E. Patton, J. Appl. Phys. 97, 103516 (2005). doi:10.1063/1.1897833 ADSCrossRefGoogle Scholar
  60. 60.
    S.G. Wang, S.D. Yoon, C. Vittoria, J. Appl. Phys. 92, 6728 (2002). doi:10.1063/1.1517749 ADSCrossRefGoogle Scholar
  61. 61.
    R. Karim, K.D. McKinstry, J.R. Truedson, C.E. Patton, IEEE Trans. Magn. 28, 3225 (1992). doi:10.1109/20.179766 ADSCrossRefGoogle Scholar
  62. 62.
    J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (Philips Technical Library, Eindhoven, Netherlands, 1959)Google Scholar
  63. 63.
    W.H. von Aulock (ed.), A. S. Boxer, J. F. Ollom, and R. F. Rauchmiller, Handbook of Microwave Ferrite Materials, Academic Press, London, 1965Google Scholar
  64. 64.
    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994)Google Scholar
  65. 65.
    A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Berlin, 2006)Google Scholar
  66. 66.
    A. Ataie, I.R. Harris, C.B. Ponton, J. Mater. Sci. 30, 1429 (1995). doi:10.1007/BF00375243 ADSCrossRefGoogle Scholar
  67. 67.
    A.J. Kerecman, T.R. AuCoin, W.P. Dattilo, J. Appl. Phys. 40, 1416 (1969). doi:10.1063/1.1657698 ADSCrossRefGoogle Scholar
  68. 68.
    D. Lisjak, M. Drofenik, J. Appl. Phys. 93, 8011 (2003). doi:10.1063/1.1540159 ADSCrossRefGoogle Scholar
  69. 69.
    G. Xiong, Z.H. Mai, J. Appl. Phys. 88, 519 (2000). doi:10.1063/1.373689 ADSCrossRefGoogle Scholar
  70. 70.
    S.G. Lee, S.J. Kwon, J. Magn. Magn. Mater. 153, 279 (1996). doi:10.1016/0304-8853(95)00559-5 ADSCrossRefGoogle Scholar
  71. 71.
    K.T. Han, Phys. Status Solidi 155, 215 (1996). doi:10.1002/pssa.2211550121 CrossRefADSGoogle Scholar
  72. 72.
    J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Phys. Rev. B 54, 9288 (1996). doi:10.1103/PhysRevB.54.9288 ADSCrossRefGoogle Scholar
  73. 73.
    I. Wane, A. Bessaudou, F. Cosset, A. Celerier, C. Girault, J.L. Decossas, J. Vareille, J. Magn. Magn. Mater. 211, 309 (2000). doi:10.1016/S0304-8853(99)00752-0 ADSCrossRefGoogle Scholar
  74. 74.
    B.S. Kwak, K. Zhang, E.P. Boyd, A. Erbif, B.J. Wilkens, J. Appl. Phys. 69, 767 (1991). doi:10.1063/1.347362 ADSCrossRefGoogle Scholar
  75. 75.
    S. Pignard, H. Vincent, J.P. Senateur, Thin Solid Films 350, 119 (1999). doi:10.1016/S0040-6090(99)00348-X ADSCrossRefGoogle Scholar
  76. 76.
    M. Matsuoka, Y. Hoshi, M. Naoe, S. Yamanaka, IEEE Trans. Magn. 20, 800 (1984). doi:10.1109/TMAG.1984.1063361 ADSCrossRefGoogle Scholar
  77. 77.
    E. Suzuki, Y. Hoshi, M. Naoe, J. Appl. Phys. 83, 6250 (1998). doi:10.1063/1.367803 ADSCrossRefGoogle Scholar
  78. 78.
    A. Morisako, X. Liu, M. Matsumoto, M. Naoe, J. Appl. Phys. 81, 4374 (1997). doi:10.1063/1.364828 ADSCrossRefGoogle Scholar
  79. 79.
    Q. Fang, H. Bao, D. Fang, J. Wang, J. Appl. Phys. 95, 6360 (2004). doi:10.1063/1.1711158 ADSCrossRefGoogle Scholar
  80. 80.
    S.Y. An, S.W. Lee, I.-B. Shim, C.S. Kim, IEEE Trans. Magn. 37, 2585 (2001). doi:10.1109/20.951243 ADSCrossRefGoogle Scholar
  81. 81.
    H. Dötsch, D. Mateika, P. Röschmann, W. Tolksdorf, Mater. Res. Bull. 18, 1209 (1983). doi:10.1016/0025-5408(83)90024-7 CrossRefGoogle Scholar
  82. 82.
    S. Capraro, J.P. Chatelon, H. Joisten, M. Le Berre, B. Bayard, D. Barbier, J.J. Rousseau, J. Appl. Phys. 93, 9898 (2003). doi:10.1063/1.1576898 ADSCrossRefGoogle Scholar
  83. 83.
    S.H. Gee, Y.K. Hong, D.W. Erickson, T. Tanaka, M.H. Park, J. Appl. Phys. 93, 7507 (2003). doi:10.1063/1.1558190 ADSCrossRefGoogle Scholar
  84. 84.
    T.L. Hylton, M.A. Parker, J.K. Howard, Appl. Phys. Lett. 61, 867 (1992). doi:10.1063/1.107772 ADSCrossRefGoogle Scholar
  85. 85.
    S.R. Shinde, R. Ramesh, S.E. Lofland, S.M. Bhagat, S.B. Ogale, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 72, 3443 (1998). doi:10.1063/1.121660 ADSCrossRefGoogle Scholar
  86. 86.
    P.C. Dorsey, D.B. Chrisey, J.S. Horwitz, P. Lubitz, R.C.Y. Auyeung, IEEE Trans. Magn. 30, 4512 (1994). doi:10.1109/20.334133 ADSCrossRefGoogle Scholar
  87. 87.
    S.A. Oliver, S.D. Yoon, I. Kouzulin, M.L. Chen, C. Vittoria, Appl. Phys. Lett. 76, 3612 (2000). doi:10.1063/1.126723 ADSCrossRefGoogle Scholar
  88. 88.
    P.R. Ohodnicki, K.Y. Goh, Y. Hanlumyuang, K. Ramos, M.E. McHenry, Z. Cai, K. Ziemer, H. Morkoç, N. Biyikli, Z. Chen, C. Vittoria, V.G. Harris, Appl. Phys. 101, 09M521 (2007)Google Scholar
  89. 89.
    E. Lacroix, P. Gerard, G. Marest, M. Dupuy, J. Appl. Phys. 69, 4770 (1991). doi:10.1063/1.348274 ADSCrossRefGoogle Scholar
  90. 90.
    A.G. Smolenski, A.A. Andreev, Bull. Acad. Sci. 25, 1405 (1961)Google Scholar
  91. 91.
    G. Asti, F. Bolzoni, J.M. Le Breton, M. Ghidini, A. Morel, M. Solzi, F. Kools, P. Tenaud, J. Magn. Magn. Mater. 272, E1845 (2004). doi:10.1016/j.jmmm.2003.12.1275 ADSCrossRefGoogle Scholar
  92. 92.
    G. Wiesinger, M. Müller, R. Grössinger, M. Pieper, A. Morel, F. Kools, P. Tenaud, J.M. LeBreton, J. Kreisel, Substituted Ferrites Studied by Nuclear Methods, Phys Status Solidi 189, 499 (2002). doi:10.1002/1521-396X(200202)189:2<499::AID-PSSA499>3.0.CO;2-H ADSCrossRefGoogle Scholar
  93. 93.
    M.W. Pieper, F. Kools, A. Morel, Phys. Rev. B 65, 184397 (2002). doi:10.1103/PhysRevB.65.184402 ADSCrossRefGoogle Scholar
  94. 94.
    H.S. Cho, S.S. Kim, IEEE Trans. Magn. 35, 3151 (1999). doi:10.1109/20.801111 ADSCrossRefGoogle Scholar
  95. 95.
    J. Kreisel, H. Vincent, F. Tasset, M. Paste, J.P. Ganne, J. Magn. Magn. Mater. 224, 17 (2001). doi:10.1016/S0304-8853(00)01355-X ADSCrossRefGoogle Scholar
  96. 96.
    J. Kreisel, H. Vincent, F. Tasset, M. Paste, P. Wolfers, Physica B 276–278, 688 (2000). doi:10.1016/S0921-4526(99)01710-X CrossRefGoogle Scholar
  97. 97.
    H.J. Zhang, X. Yao, L.Y. Zhang, J. Magn. Magn. Mater. 241, 441 (2002). doi:10.1016/S0304-8853(01)00447-4 CrossRefGoogle Scholar
  98. 98.
    P. Wartewig, M.K. Krause, P. Esquinazi, S. Rosler, R. Sonntag, J. Magn. Magn. Mater. 192, 83 (1999). doi:10.1016/S0304-8853(98)00382-5 ADSCrossRefGoogle Scholar
  99. 99.
    Q.Y. Feng, L. Jen, IEEE Trans. Magn. 38, 1391 (2002). doi:10.1109/20.996032 ADSCrossRefGoogle Scholar
  100. 100.
    J. Kreisel, H. Vincent, F. Tasset, P. Wolfers, J. Magn. Magn. Mater. 213, 262 (2000). doi:10.1016/S0304-8853(00)00014-7 ADSCrossRefGoogle Scholar
  101. 101.
    G. Litsardakis, I. Manolakis, K. Efthimiadis, J. Alloy. Comp. 427, 194 (2007). doi:10.1016/j.jallcom.2006.02.044 CrossRefGoogle Scholar
  102. 102.
    M.V. Rane, D. Bahadur, A.K. Nigan, C.M. Srivastava, J. Magn. Magn. Mater. 192, 288 (1999). doi:10.1016/S0304-8853(98)00533-2 ADSCrossRefGoogle Scholar
  103. 103.
    G.K. Thompson, B.J. Evans, J. Appl. Phys. 75, 6643 (1994). doi:10.1063/1.356881 ADSCrossRefGoogle Scholar
  104. 104.
    O. Kohmoto, T. Tsukada, S. Sato, Jpn. J. Appl. Phys. 29, 1944 (1990). doi:10.1143/JJAP.29.1944 ADSCrossRefGoogle Scholar
  105. 105.
    Y. Kawai, V.A.M. Brabers, Z. Simsa, J.H.J. Dalderop, J. Magn. Magn. Mater. 196–197, 309 (1999). doi:10.1016/S0304-8853(98)00729-X CrossRefGoogle Scholar
  106. 106.
    V. Babu, P. Padaikathan, J. Magn. Magn. Mater. 241, 85 (2002). doi:10.1016/S0304-8853(01)00811-3 ADSCrossRefGoogle Scholar
  107. 107.
    P. Shi, H. How, X. Zuo, S.D. Yoon, S.A. Oliver, C. Vittoria, IEEE Trans. Magn. 37, 2389 (2001). doi:10.1109/20.951181 ADSCrossRefGoogle Scholar
  108. 108.
    M. Pal, P. Brahma, B.R. Chakraborty, D. Chakravorty, Jpn. J. Appl. Phys. 36, 2163 (1997). doi:10.1143/JJAP.36.2163 ADSCrossRefGoogle Scholar
  109. 109.
    P. Brahma, S. Banerjee, S. Chakraborty, D. Chakravorty, J. Appl. Phys. 88, 6526 (2000). doi:10.1063/1.1309045 ADSCrossRefGoogle Scholar
  110. 110.
    P.A. Mariño-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, R. Lora-Serrano, J. Magn. Magn. Mater. 280, 214 (2004). doi:10.1016/j.jmmm.2004.03.015 ADSCrossRefGoogle Scholar
  111. 111.
    M. Küpferling, R. Grössinger, M.W. Pieper, G. Wiesinger, H. Michor, C. Ritter, F. Kubel, Phys. Rev. B 73, 144408 (2006). doi:10.1103/PhysRevB.73.144408 ADSCrossRefGoogle Scholar
  112. 112.
    J.F. Wang, C.B. Ponton, R. Grössinger, I.R. Harris, J. Alloy. Comp. 369, 170 (2004). doi:10.1016/j.jallcom.2003.09.097 CrossRefGoogle Scholar
  113. 113.
    J.F. Wang, C.B. Ponton, I.R. Harris, IEEE Trans. Magn. 38, 2928 (2002). doi:10.1109/TMAG.2002.803071 ADSCrossRefGoogle Scholar
  114. 114.
    F.K. Lotgering, J. Phys. Chem. Solids 35, 1633 (1974). doi:10.1016/S0022-3697(74)80176-9 ADSCrossRefGoogle Scholar
  115. 115.
    V.L. Moruzzi, M.W. Shafer, J. Am. Ceram. Soc. 43, 367 (1960). doi:10.1111/j.1151-2916.1960.tb13673.x CrossRefGoogle Scholar
  116. 116.
    C.M. Fang, F. Kools, R. Metselaar, G. deWith, R.A. de Groot, J. Phys. Condens. Matter 15, 6229 (2003). doi:10.1088/0953-8984/15/36/311 ADSCrossRefGoogle Scholar
  117. 117.
    G. Albanese, M. Carbucicchio, G. Asti, Appl. Phys. Berl. 11, 81 (1976). doi:10.1007/BF00895020 ADSCrossRefGoogle Scholar
  118. 118.
    R.A. Braden, I. Cordon, R.L. Harvey, IEEE Trans. Magn. 2, 43 (1966). doi:10.1109/TMAG.1966.1065781 ADSCrossRefGoogle Scholar
  119. 119.
    D. Autissier, A. Podembski, C. Jacquiod, J. Phys. IV 7, 409 (1997). doi:10.1051/jp4:19971165 CrossRefGoogle Scholar
  120. 120.
    M. Matsumoto, Y. Miyata, J. Appl. Phys. 79, 5486 (1996). doi:10.1063/1.362284 ADSCrossRefGoogle Scholar
  121. 121.
    E. Pollert, Prog. Cryst. Growth Charact. 11, 155 (1985). doi:10.1016/0146-3535(85)90033-4 CrossRefGoogle Scholar
  122. 122.
    B.X. Gu, J. Appl. Phys. 75, 4114 (1994). doi:10.1063/1.355991 ADSCrossRefGoogle Scholar
  123. 123.
    B.X. Gu, J. Appl. Phys. 70, 372 (1991). doi:10.1063/1.350284 ADSCrossRefGoogle Scholar
  124. 124.
    B.X. Gu, J. Appl. Phys. 71, 5103 (1992). doi:10.1063/1.350613 ADSCrossRefGoogle Scholar
  125. 125.
    F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J.L. Sanchez, O. Ares, Rong Hua Xue, J. Mater. Sci. 25, 2765 (1990). doi:10.1007/BF00584876 ADSCrossRefGoogle Scholar
  126. 126.
    M. El-Saadawy, Inter. Cer. Rev. 52, 206 (2003)Google Scholar
  127. 127.
    B.X. Gu, H.X. Lu, Y.W. Du, J. Magn. Magn. Mater. 31–34, 803 (1983). doi:10.1016/0304-8853(83)90693-5 Google Scholar
  128. 128.
    D. Lisjak, D. Makovec, M. Drofenik, J. Mater. Res. 21, 420 (2006). doi:10.1557/jmr.2006.0048 ADSCrossRefGoogle Scholar
  129. 129.
    P.B. Braun, Philips Res. Rep. 12, 491 (1957)Google Scholar
  130. 130.
    H.J. Zhang, X. Jia, X. Yao, L.Y. Zhang, Rare Met. 23, 27 (2004)Google Scholar
  131. 131.
    D. Lisjak, M. Drofenik, J. Magn. Magn. Mater. 272–276, E1817 (2004). doi:10.1016/j.jmmm.2003.12.879 CrossRefGoogle Scholar
  132. 132.
    M.N. Afsar, D. Lisjak, A. Bahadoor, Y. Wang, IEEE Trans. Magn. 41, 3472 (2005). doi:10.1109/TMAG.2005.854885 ADSCrossRefGoogle Scholar
  133. 133.
    H. Zhang, Z. Liu, X. Yao, L. Zhang, M. Wu, Mater. Sci. Eng. B 97, 160 (2003). doi:10.1016/S0921-5107(02)00571-8 CrossRefGoogle Scholar
  134. 134.
    D. Lisjak, V.B. Bregar, M. Drofenik, J. Magn. Magn. Mater. 310, 2558 (2007). doi:10.1016/j.jmmm.2006.10.866 ADSCrossRefGoogle Scholar
  135. 135.
    T. Nakamura, K.-I. Hatakeyama, IEEE Trans. Magn. 36, 3415 (2000). doi:10.1109/20.908844 ADSCrossRefGoogle Scholar
  136. 136.
    H.J. Kwon, J.Y. Shin, J.Y. Oh, J. Appl. Phys. 75, 6109 (1994). doi:10.1063/1.355476 ADSCrossRefGoogle Scholar
  137. 137.
    M. Obol, C. Vittoria, J. Appl. Phys. 94, 4013 (2003). doi:10.1063/1.1601291 ADSCrossRefGoogle Scholar
  138. 138.
    M. Obol, C. Vittoria, IEEE Trans. Magn. 39, 3103 (2003). doi:10.1109/TMAG.2003.816019 ADSCrossRefGoogle Scholar
  139. 139.
    M. Obol, C. Vittoria, J. Magn. Magn. Mater. 272–276, E1799 (2004). doi:10.1016/j.jmmm.2003.12.1116 CrossRefGoogle Scholar
  140. 140.
    M. Obol, C. Vittoria, J. Magn. Magn. Mater. 265, 290 (2003). doi:10.1016/S0304-8853(03)00277-4 ADSCrossRefGoogle Scholar
  141. 141.
    J. Temuujin, M. Aoyama, M. Senna, T. Masuko, C. Ando, H. Kishi, J. Solid State Chem. 177, 3903 (2004). doi:10.1016/j.jssc.2004.06.051 ADSCrossRefGoogle Scholar
  142. 142.
    X. Li, R. Gong, Z. Feng, J. Yan, X. Shen, H. He, J. Am. Ceram. Soc. 89, 1450 (2006). doi:10.1111/j.1551-2916.2006.00873.x CrossRefGoogle Scholar
  143. 143.
    R. Muller, J. Magn. Magn. Mater. 101, 230 (1991). doi:10.1016/0304-8853(91)90739-W ADSCrossRefGoogle Scholar
  144. 144.
    R. Muller, J. Magn. Magn. Mater. 120, 61 (1993). doi:10.1016/0304-8853(93)91287-H ADSCrossRefGoogle Scholar
  145. 145.
    F. Haberey, IEEE Trans. Magn. 23, 29 (1987). doi:10.1109/TMAG.1987.1064766 ADSCrossRefGoogle Scholar
  146. 146.
    H. Zhang, Z. Liu, X. Yao, L. Zhang, M. Wu, J. Sol–Gel Sci. Technol. 27, 277 (2003). doi:10.1023/A:1024060717937 CrossRefGoogle Scholar
  147. 147.
    X. Wang, D. Li, L. Lu, X. Wang, J. Alloy. Comp. 237, 45 (1996). doi:10.1016/0925-8388(95)02160-4 CrossRefGoogle Scholar
  148. 148.
    H. Graetsch, F. Harberey, R. Leckebusch, M.S. Rosenberg, K. Sahl, IEEE Trans. Magn. 20, 495 (1984). doi:10.1109/TMAG.1984.1063119 ADSCrossRefGoogle Scholar
  149. 149.
    H. Kojima, C. Miyakawa, T. Sato, K. Goto, Jpn. J. Appl. Phys. 24, 51 (1985). doi:10.1143/JJAP.24.51 ADSCrossRefGoogle Scholar
  150. 150.
    F. Haberey, P. Wiesemann, IEEE Trans. Magn. 24, 2112 (1988). doi:10.1109/20.3412 ADSCrossRefGoogle Scholar
  151. 151.
    A. Paoluzi, G. Turilli, F. Licci, S. Rinaldi, J. Appl. Phys. 61, 3301 (1987). doi:10.1063/1.338889 ADSCrossRefGoogle Scholar
  152. 152.
    S. Rinaldi, F. Licci, A. Paoluzi, G. Turilli, J. Appl. Phys. 60, 3680 (1986). doi:10.1063/1.337575 ADSCrossRefGoogle Scholar
  153. 153.
    K.K. Mallick, P. Shepherd, R.J. Green, J. Magn. Magn. Mater. 312, 418 (2007). doi:10.1016/j.jmmm.2006.11.130 ADSCrossRefGoogle Scholar
  154. 154.
    A.M. Abo El Ata, F.M. Reicha, M.M. Ali, J. Magn. Magn. Mater. 292, 17 (2005). doi:10.1016/j.jmmm.2004.10.091 ADSCrossRefGoogle Scholar
  155. 155.
    D. El Kony, S.A. Saafan, J. Magn. Magn. Mater. 267, 46 (2003). doi:10.1016/S0304-8853(03)00303-2 ADSCrossRefGoogle Scholar
  156. 156.
    S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, J. Magn. Magn. Mater. 212, 175 (2000). doi:10.1016/S0304-8853(99)00755-6 ADSCrossRefGoogle Scholar
  157. 157.
    P. Shepherd, K.K. Mallick, R.J. Green, J. Mater. Sci. Mater. Electron. 18, 527 (2007). doi:10.1007/s10854-006-9059-6 CrossRefGoogle Scholar
  158. 158.
    D. El-Kony, S.A. Saafan, A.M. Abo El Ata, Egypt J. Solids 23, 137 (2000)Google Scholar
  159. 159.
    A.M. Abo El Ata, M.K. El Nimr, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 204, 36 (1999) doi:10.1016/S0304-8853(99)00381-9
  160. 160.
    S.P. Kuntsevich, V.P. Palekhin, Soviet Physics-Solid State 15, 2314 (1974)Google Scholar
  161. 161.
    Y. Maeda, S. Sugimoto, D. Book, H. Ota, M. Kimura, H. Nakamura, T. Kagotani, M. Homma, Mater. Trans. JIM 41, 567 (2000)Google Scholar
  162. 162.
    F.K. Lotgering, U. Enz, J. Smit, Philips Res. Rep. 16, 441 (1961)Google Scholar
  163. 163.
    A. Paoluzi, F. Licci, O. Moze, G. Turilli, A. Deriu, G. Albanese, E. Calabrese, J. Appl. Phys. 63, 5074 (1988). doi:10.1063/1.340405 ADSCrossRefGoogle Scholar
  164. 164.
    Y. Takada, T. Nakagawa, M. Tokunaga, Y. Fukuta, T. Tanaka, T.A. Yamamoto, T. Tachibana, S. Kawano, Y. Ishii, N. Igawa, J. Appl. Phys. 100, 043904 (2006). doi:10.1063/1.2204334 ADSCrossRefGoogle Scholar
  165. 165.
    P.M.G. Nambissan, C. Upadhyay, H.C. Verma, J. Appl. Phys. 93, 6320 (2003). doi:10.1063/1.1569973 ADSCrossRefGoogle Scholar
  166. 166.
    T. Sato, K. Haneda, M. Seki, T. Iijima, Appl. Phys., A Solids Surf. 50, 13 (1990). doi:10.1007/BF00323947 ADSCrossRefGoogle Scholar
  167. 167.
    T. Kamiyama, K. Haneda, T. Sato, S. Ikeda, H. Asano, Solid State Commun. 81, 563 (1992). doi:10.1016/0038-1098(92)90412-3 ADSCrossRefGoogle Scholar
  168. 168.
    H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, G. Olivery, G. Busca, J. Appl. Phys. 81, 1851 (1997). doi:10.1063/1.364068 ADSCrossRefGoogle Scholar
  169. 169.
    B. Jeyadevan, K. Tohji, K. Nakatsuka, J. Appl. Phys. 76, 6325 (1994). doi:10.1063/1.358255 ADSCrossRefGoogle Scholar
  170. 170.
    W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G.M. Kalvius, Phys. Rev. B 53, 9143 (1996). doi:10.1103/PhysRevB.53.9143 ADSCrossRefGoogle Scholar
  171. 171.
    J.C. Ho, H.H. Hamdeh, Y.Y. Chen, S.H. Lin, Y.D. Yao, R.J. Willey, S.A. Oliver, Phys. Rev. B 52, 10122 (1995). doi:10.1103/PhysRevB.52.10122 ADSCrossRefGoogle Scholar
  172. 172.
    M. Tachiki, Prog. Theor. Phys. 23, 1055 (1960). doi:10.1143/PTP.23.1055 ADSCrossRefGoogle Scholar
  173. 173.
    S.D. Bhame, P.A. Joy, J. Appl. Phys. 99, 073901 (2006). doi:10.1063/1.2183356 ADSCrossRefGoogle Scholar
  174. 174.
    Y. Suzuki, R.B. van Dover, E.M. Gyorgy, M.J. Phillips, V. Korenivski, D.J. Werder, C.H. Chen, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., K.B. Do, Appl. Phys. Lett. 68, 714 (1996). doi:10.1063/1.116601 ADSCrossRefGoogle Scholar
  175. 175.
    G. Hu, J.H. Choi, C.B. Eom, V.G. Harris, Y. Suzuki, Phys. Rev. B 62, R779 (2000). doi:10.1103/PhysRevB.62.R779 ADSCrossRefGoogle Scholar
  176. 176.
    J. Dash, R. Krishnan, N. Venkataramani, S. Prasad, S.N. Shringi, P. Kishan, N. Kumar, J. Magn. Magn. Mater. 152, L1 (1996). doi:10.1016/0304-8853(95)00532-3 ADSCrossRefGoogle Scholar
  177. 177.
    S. Capdeville, P. Alphonse, C. Bonningue, L. Presmanes, P. Tailhades, J. Appl. Phys. 96, 6142 (2004). doi:10.1063/1.1808904 ADSCrossRefGoogle Scholar
  178. 178.
    S.A. Chambers, R.F.C. Farrow, S. Maat, M.F. Toney, L. Folks, J.G. Catalanoc, T.P. Trainorc, G.E. Brown, J. Magn. Magn. Mater. 246, 124 (2002). doi:10.1016/S0304-8853(02)00039-2 ADSCrossRefGoogle Scholar
  179. 179.
    F.-X. Cheng, J.-T. Jia, Z.-G. Xu, B. Zhou, C.-S. Liao, C.-H. Yan, L.-Y. Chen, H.-B. Zhao, J. Appl. Phys. 86, 2727 (1999). doi:10.1063/1.371117 ADSCrossRefGoogle Scholar
  180. 180.
    Y. Suzuki, Annu. Rev. Mater. Res. 31, 265 (2001). doi:10.1146/annurev.matsci.31.1.265 CrossRefADSGoogle Scholar
  181. 181.
    R.W. McCallum, K.W. Dennis, D.C. Jiles, J.E. Snyder, Y.H. Chen, Low Temp. Phys. 27, 266 (2001). doi:10.1063/1.1365598 ADSCrossRefGoogle Scholar
  182. 182.
    I.M.L. Billas, A. Chatelain, W.A. de Heer, Science 265, 1682 (1994). doi:10.1126/science.265.5179.1682 PubMedADSCrossRefGoogle Scholar
  183. 183.
    J. Shi, S. Gider, K. Babcock, D.D. Awschalom, Science 271, 937 (1996). doi:10.1126/science.271.5251.937 ADSCrossRefGoogle Scholar
  184. 184.
    M. Kishimoto, Y. Sakurai, T. Ajima, J. Appl. Phys. 76, 7506 (1994). doi:10.1063/1.357981 ADSCrossRefGoogle Scholar
  185. 185.
    Y.I. Kim, H. Kang, D. Kim, C.S. Lee, Bull. Korean Chem. Soc. 24, 593 (2003)Google Scholar
  186. 186.
    M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006). doi:10.1016/j.jmmm.2005.08.029 ADSCrossRefGoogle Scholar
  187. 187.
    E.S. Murdock, R.F. Simmons, R. Davidson, IEEE Trans. Magn. 28, 3078 (1992). doi:10.1109/20.179719 ADSCrossRefGoogle Scholar
  188. 188.
    B.P. Rao, C.-O. Kim, C. Kim, I. Dumitru, L. Spinu, O.F. Caltun, IEEE Trans. Magn. 42, 2858 (2006). doi:10.1109/TMAG.2006.879901 ADSCrossRefGoogle Scholar
  189. 189.
    A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, M.C.M. Alves, J. Appl. Phys. 87, 4352 (2000). doi:10.1063/1.373077 ADSCrossRefGoogle Scholar
  190. 190.
    D.H. Chen, Y.Y. Chen, J. Colloid Interface Sci. 235, 9 (2001). doi:10.1006/jcis.2000.7340 PubMedCrossRefGoogle Scholar
  191. 191.
    S.Z. Zhang, G.L. Messing, J. Am. Ceram. Soc. 73, 61 (1990). doi:10.1111/j.1151-2916.1990.tb05091.x CrossRefGoogle Scholar
  192. 192.
    C.S. Kim, Y.S. Yi, K.-T. Park, H. Namgung, J.-G. Lee, J. Appl. Phys. 85, 5223 (1999). doi:10.1063/1.369950 ADSCrossRefGoogle Scholar
  193. 193.
    Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, J. Magn. Magn. Mater. 208, 55 (2000). doi:10.1016/S0304-8853(99)00566-1 ADSCrossRefGoogle Scholar
  194. 194.
    S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, J. Am. Ceram. Soc. 81, 3041 (1998)CrossRefGoogle Scholar
  195. 195.
    C. Rath, N.C. Mishra, S. Anand, R.P. Das, K.K. Sahu, C. Upadhyay, H.C. Verma, Appl. Phys. Lett. 76, 475 (2000). doi:10.1063/1.125792 ADSCrossRefGoogle Scholar
  196. 196.
    A. Singh, A. Verma, O. Thakur, C. Prakash, T. Goel, R.G. Mendiratta, Mater. Lett. 57, 1040 (2003). doi:10.1016/S0167-577X(02)00921-7 CrossRefGoogle Scholar
  197. 197.
    Z. Cheng, H. Yang, L. Yu, Y. Cui, S. Feng, J. Magn. Magn. Mater. 302, 259 (2006). doi:10.1016/j.jmmm.2005.09.015 ADSCrossRefGoogle Scholar
  198. 198.
    X. Batlle, X. Obradors, M. Medarde, J.R. Carvajal, M. Pernet, J. Magn. Magn. Mater. 124, 228 (1993). doi:10.1016/0304-8853(93)90092-G ADSCrossRefGoogle Scholar
  199. 199.
    S. Maensiria, C. Masingboona, B. Boonchomb, S. Seraphinc, Scr. Mater. 56, 797 (2007). doi:10.1016/j.scriptamat.2006.09.033 CrossRefGoogle Scholar
  200. 200.
    F. Bertaut, F. Forrat, Compt. Rend. Acad. Sci. Paris 242, 382 (1956)Google Scholar
  201. 201.
    G.P. Rodrigue, Proc. IEEE 76, 121 (1988). doi:10.1109/5.4389 ADSCrossRefGoogle Scholar
  202. 202.
    M. Pardavi-Horvath, J. Magn. Magn. Mater. 215–216, 171 (2000). doi:10.1016/S0304-8853(00)00106-2 CrossRefGoogle Scholar
  203. 203.
    C. Vittoria, P. Lubitz, P. Hansen, W. Tolksdorf, J. Appl. Phys. 57, 3699 (1985). doi:10.1063/1.334994 ADSCrossRefGoogle Scholar
  204. 204.
    T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, H. Yamamoto, IEEE Trans. Magn. 23, 3491 (1987). doi:10.1109/TMAG.1987.1065531 ADSCrossRefGoogle Scholar
  205. 205.
    S.-Y. Sung, X. Qi, B.J.H. Stadler, Appl. Phys. Lett. 87, 121111 (2005). doi:10.1063/1.2046733 ADSCrossRefGoogle Scholar
  206. 206.
    M. Gomi, T. Tanida, M. Abe, J. Appl. Phys. 57, 3888 (1985). doi:10.1063/1.334905 ADSCrossRefGoogle Scholar
  207. 207.
    J.-P. Krumme, V. Doormann, P. Willich, J. Appl. Phys. 57, 3885 (1985). doi:10.1063/1.335486 ADSCrossRefGoogle Scholar
  208. 208.
    Y. Dumont, N. Keller, E. Popova, D. S. Schmool, S. Bhattacharya, B. Stahl, M. Tessier, M. Guyot, J. Appl. Phys. 97, 10G108 (2005)Google Scholar
  209. 209.
    S. Kahl, A.M. Grishin, J. Appl. Phys. 93, 6945 (2003). doi:10.1063/1.1543855 ADSCrossRefGoogle Scholar
  210. 210.
    H. Kidoh, A. Morimoto, T. Shimizu, Appl. Phys. Lett. 59, 237 (1991). doi:10.1063/1.105977 ADSCrossRefGoogle Scholar
  211. 211.
    Y.H. Kim, J.S. Kim, S.I. Kim, M. Levy, J. Korean Phys. Soc. 43, 400 (2003)Google Scholar
  212. 212.
    P.C. Dorsey, S.E. Bushnell, R.G. Seed, C. Vittoria, J. Appl. Phys. 74, 1242 (1993). doi:10.1063/1.354927 ADSCrossRefGoogle Scholar
  213. 213.
    T. Okuda, T. Katayama, H. Kobayashi, N. Kobayashi, K. Satoh, H. Yamamoto, J. Appl. Phys. 67, 4944 (1990). doi:10.1063/1.344740 ADSCrossRefGoogle Scholar
  214. 214.
    P. Hansen, J.P. Krumme, Thin Solid Films 114, 69 (1984). doi:10.1016/0040-6090(84)90337-7 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations