Structure and piezoelectric properties of lead-free (Na0.52K0.44−x)(Nb0.95−xSb0.05)O3-xLiTaO3 ceramics



Lead-free (Na0.52K0.48−x)(Nb0.95−xSb0.05)O3-xLiTaO3 (x = 0.025–0.05) piezoelectric ceramics in which the Sb content is kept constant, have been specially designed and successfully fabricated by a conventional solid state reaction method. The (Na0.52K0.48)(Nb0.95Sb0.05)O3 ceramics can be well sintered after A-site and B-site cations are replaced by Li+ and Ta5+, respectively. A single-phase perovskite structure remains within the studied substitution concentration. An orthorhombic-tetragonal phase transition occurs with gradually increasing the content of Li+ and Ta5+, and was identified in the composition range of 0.0375 < x < 0.0425 where two kinds of ferroelectric phases may coexist and simultaneously a strong compositional dependence of electrical properties was found out. An appropriate content of Sb effectively enhanced the piezoelectric properties of the materials. The optimum overall properties with a piezoelectric constant d33 of 321 pC/N, a dielectric constant \( \varepsilon_{33}^{T} \) of 1,780, a planar electromechanical coupling coefficient kp of 0.52 and a Curie temperature Tc of 315 °C were obtained in the composition with x = 0.0425, indicating the ceramics studied have potentials for replacing lead-containing ceramics for device applications.



This work was financially supported by Key Project of Natural Science Research of Universities in Anhui Province (KJ2009A089), by the Research Fund for the Doctoral Program of Higher Education (No. 200803591018), and by Program for New Century Excellent Talents in University (NCET-08-0766), State Education Ministry.


  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004). doi:10.1038/nature03028 CrossRefPubMedADSGoogle Scholar
  2. 2.
    B.Q. Ming, J.F. Wang, P. Qi, G.Z. Zang, J. Appl. Phys. 101, 054103 (2007). doi:10.1063/1.2436923 CrossRefADSGoogle Scholar
  3. 3.
    E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005). doi:10.1063/1.2123387 CrossRefADSGoogle Scholar
  4. 4.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006). doi:10.1063/1.2382348 CrossRefADSGoogle Scholar
  5. 5.
    H.C. Song, K.H. Cho, H.Y. Park, C.W. Ahn, S. Nahm, K. Uchino, S.H. Park, H.G. Lee, J. Am. Ceram. Soc. 90, 1812 (2007). doi:10.1111/j.1551-2916.2007.01698.x CrossRefGoogle Scholar
  6. 6.
    J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu, W.J. Wu, Jpn. J. Appl. Phys. 46, 7375 (2007). doi:10.1143/JJAP.46.7375 CrossRefADSGoogle Scholar
  7. 7.
    S. Tashiro, K. Nagata, Jpn. J. Appl. Phys. 43, 6711 (2004). doi:10.1143/JJAP.43.6711 CrossRefADSGoogle Scholar
  8. 8.
    Y.L. Wang, D. Damjanovic, N. Klein, E. Hollenstein, N. Setter, J. Am. Ceram. Soc. 90, 3485 (2007). doi:10.1111/j.1551-2916.2007.01962.x CrossRefGoogle Scholar
  9. 9.
    P. Zhao, B.P. Zhang, J.F. Li, Appl. Phys. Lett. 91, 172901 (2007). doi:10.1063/1.2794405 CrossRefADSGoogle Scholar
  10. 10.
    D.J. Liu, H.L. Du, F.S. Tang, F. Luo, D.M. Zhu, W.C. Zhou, J. Electroceram. 20, 107 (2008). doi:10.1007/s10832-007-9373-2 CrossRefGoogle Scholar
  11. 11.
    H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Z.B. Pei, Appl. Phys. Lett. 91, 202907 (2007). doi:10.1063/1.2815750 CrossRefADSGoogle Scholar
  12. 12.
    R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007). doi:10.1063/1.2710768 CrossRefADSGoogle Scholar
  13. 13.
    D.M. Lin, K.W. Kwok, H.L.W. Chan, Appl. Phys. Lett. 91, 143513 (2007). doi:10.1063/1.2794798 CrossRefADSGoogle Scholar
  14. 14.
    R.Z. Zuo, X.S. Fang, C. Ye, L.T. Li, J. Am. Ceram. Soc. 90, 2424 (2007). doi:10.1111/j.1551-2916.2007.01767.x CrossRefGoogle Scholar
  15. 15.
    Z.P. Yang, Y.F. Chang, L.L. Wei, Appl. Phys. Lett. 90, 042911 (2007). doi:10.1063/1.2436648 CrossRefADSGoogle Scholar
  16. 16.
    F. Rubio-Marcos, P. Ochoa, J.F. Fernaadez, J. Eur. Ceram. Soc. 27, 4125 (2007). doi:10.1016/j.jeurceramsoc.2007.02.110 CrossRefGoogle Scholar
  17. 17.
    D.M. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Phys. D. Appl. Phys. (Berl.) 41, 052002 (2008)CrossRefADSGoogle Scholar
  18. 18.
    E.K. Akdogan, K. Kerman, M. Abazari, A. Safari, Appl. Phys. Lett. 92, 112908 (2008). doi:10.1063/1.2897033 CrossRefADSGoogle Scholar
  19. 19.
    J.G. Wu, T. Peng, Y.Y. Wang, D.Q. Xiao, J.M. Zhu, Y. Jin, J.G. Zhu, P. Yu, L. Wu, Y.H. Jiang, J. Am. Ceram. Soc. 91, 319 (2008)Google Scholar
  20. 20.
    D.M. Lin, K.W. Kwok, H.Y. Tian, H.L.W. Chan, J. Am. Ceram. Soc. 90, 1458 (2007). doi:10.1111/j.1551-2916.2007.01627.x CrossRefGoogle Scholar
  21. 21.
    Y.P. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241 (2005). doi:10.1016/j.matlet.2004.07.057 CrossRefGoogle Scholar
  22. 22.
    Y. Saito, H. Takao, Ferroelectrics 338, 17 (2006). doi:10.1080/00150190600732512 CrossRefGoogle Scholar
  23. 23.
    J.G. Fisher, M.S. Kim, H.Y. Lee, S.J.L. Kang, J. Am. Ceram. Soc. 87, 937 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Koichi, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005). doi:10.1111/j.1551-2916.2005.00229.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Fu
    • 1
  • Ruzhong Zuo
    • 1
  • Danya Lv
    • 1
  • Yi Liu
    • 1
  • Yang Wu
    • 1
  1. 1.Institute of Electro Ceramics & Devices, School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations