Synthesis and characterization of Al2O3–ZrO2 nanocomposite powder by sucrose process

  • A. BeitollahiEmail author
  • H. Hosseini-Bay
  • H. Sarpoolaki


Nanocrystalline alumina–zirconia powders were prepared by a modified chemical route using sucrose, polyvinyl alcohol (PVA) and metal nitrates followed by a post calcination process. The process involved dehydration of Al3+–Zr4+ ions-sucrose–PVA solution to a highly viscous liquid which on decomposition process produced a black precursor material. The obtained precursor were then calcined at various temperatures: 1,050, 1,100, 1,150, 1,200 and 1,250 °C for different soaking times (1, 2, 4 h) in air. The formation of a nanocomposite composed of α-alumina (~20 nm) and tetragonal (t) zirconia (~19 nm) crystallites were confirmed for the sample calcined at 1,200 °C for 2 h, based on our XRD and TEM results. However, for the samples calcined below 1,150 °C the composite formed were composed of metastable alumina (γ, δ, θ) as well as t-zirconia phases. Interestingly, the zirconia phase retained its tetragonal structure for all the samples calcined above 1,050 °C. This is possibly related to the “size effect” and reduction of surface enthalpy of the zirconia crystallites surrounded by Al3+ cations.


Zirconia Boehmite Simultaneous Thermal Analysis Zirconia Particle Nanocomposite Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the help of Nanomaterials Group, Advanced Materials Research Center (AMRC), IUST. Further, the support of Iranian Nanotechnology Initiative Council (INIC) is also acknowledged.


  1. 1.
    G.H. Beall, L.R. Pinckney, J. Am. Ceram. Soc. 82, 5 (1999)Google Scholar
  2. 2.
    H. Gleiter, Acta Mater. 48, 1 (2000). doi: 10.1016/S1359-6454(99)00285-2 CrossRefGoogle Scholar
  3. 3.
    H. Singh Nalwa, Nanostructured materials and nanotechnology (Academic Press, London, 2002)Google Scholar
  4. 4.
    T. Sornakumar, M.V. Gopalakrishnan, R. Krishnamurphy, C.V. Gokularathnam, Int. J. Refract. Metab. Hard Mater. 13, 375 (1995). doi: 10.1016/0263-4368(95)00026-F CrossRefGoogle Scholar
  5. 5.
    Y. Murase, E. Kato, K. Daimon, J. Am. Ceram. Soc. 69, 195 (1986). doi: 10.1111/j.1151-2916.1986.tb04706.x CrossRefGoogle Scholar
  6. 6.
    B. Mondal, A.B. Chattopadhyay, A. Virkar, A. Paul, Wear 156, 365 (1992). doi: 10.1016/0043-1648(92)90229-2 CrossRefGoogle Scholar
  7. 7.
    W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng, P.S. Kuo, J. Eur. Ceram. Soc. 22, 2827 (2002). doi: 10.1016/S0955-2219(02)00043-2 CrossRefGoogle Scholar
  8. 8.
    F.L. Matthews, R.D. Rawlings, Composite materials: engineering and science (Chapman and Hall, London, 1994), p. 137Google Scholar
  9. 9.
    B. Kibbel, A.H. Heuer, J. Am. Ceram. Soc. 69, 231 (1986). doi: 10.1111/j.1151-2916.1986.tb07414.x CrossRefGoogle Scholar
  10. 10.
    D.J. Green, J. Am. Ceram. Soc. 65, 610 (1982). doi: 10.1111/j.1151-2916.1982.tb09939.x CrossRefGoogle Scholar
  11. 11.
    B. Fegley Jr., P. White, H.K. Bowen, J. Am. Ceram. Soc. 68, C-60 (1985)CrossRefGoogle Scholar
  12. 12.
    M.L. Balmer, F.F. Lange, V. Jayram, C.G. Levi, J. Am. Ceram. Soc. 78, 1489 (1995)CrossRefGoogle Scholar
  13. 13.
    R.K. Pati, J.C. Ray, P. Pramanik, Mater Lett. 44, 299 (2000)CrossRefGoogle Scholar
  14. 14.
    R.N. Das, Mat. Lett. 47, 344 (2001)CrossRefGoogle Scholar
  15. 15.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  16. 16.
    J.A. Gadsden, Infrared spectra of minerals and related inorganic compounds (Butterworth, London, 1975), p. 193Google Scholar
  17. 17.
    K. Wefers, C. Misra, Oxides and hydroxides of aluminium, (ALCOA Technical pap No. 19 Rev., ALCOA Labs, 1987)Google Scholar
  18. 18.
    F.W. Dynys, J.W. Halloran, J. Am. Ceram. Soc. 65, 442 (1982)CrossRefGoogle Scholar
  19. 19.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, 2nd edn. (Wiley, New York, 1976)Google Scholar
  20. 20.
    B. Djuricic, S. Pickering, P. Glaude, D. Mcgarry, P. Tam-Buyser, J. Mater. Sci. 32, 589 (1997)CrossRefGoogle Scholar
  21. 21.
    J.R. Wynnyckyj, C.G. Morris, Metall. Trans. B 16, 345 (1985)CrossRefGoogle Scholar
  22. 22.
    R.D. Purohit, S. Saha, A.K. Tyagi, Mater. Sci. Eng. B 130, 57 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Moreau, M. Geravais, A. Douy, Solid State Ionics 625, 101–103 (1997)Google Scholar
  24. 24.
    N. Claussen, R. Wanger, L.J. Gauckler, G. Petzor, J. Am. Ceram. Soc. 61, 369 (1978)CrossRefGoogle Scholar
  25. 25.
    Y. Murase, E. Kato, K. Diamon, J. Am. Ceram. Soc. 69, 83 (1986)CrossRefGoogle Scholar
  26. 26.
    K. Ishida, K. Hirota, O. Yamaguchi, H. Kume, S. Inamura, H. Miyamoto, J. Am. Ceram. Soc. 77, 1319 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Kikkawa, A. Kijima, K. Hirota, O. Yamamoto, J. Am. Ceram. Soc. 85, 721 (2002)Google Scholar
  28. 28.
    R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)CrossRefGoogle Scholar
  29. 29.
    A.H. Heuer, N. Claussen, W.M. Kriven, M. Ruhle, J. Am. Ceram. Soc. 65, 642 (1982)CrossRefGoogle Scholar
  30. 30.
    A.H. Heuer, J. Am. Ceram. Soc. 70, 689 (1987)CrossRefGoogle Scholar
  31. 31.
    R.C. Garvie, J. Am. Chem. Soc. 82, 218 (1978)Google Scholar
  32. 32.
    S. Ram, A. Mondal, Appl. Surf. Sci. 221, 237 (2004)CrossRefADSGoogle Scholar
  33. 33.
    V.V. Srdic, M. Winterer, A. Moller, G. Miehe, H. Hahn, J. Am. Ceram. Soc. 84(12), 2771 (2001)CrossRefGoogle Scholar
  34. 34.
    V.V. Srdic, M. Winterer, H. Hahn, J. Am. Ceram. Soc. 83, 1853 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Nanomaterials Group, Department of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations