Controllable synthesis and luminescence property of LnPO4 (Ln = La, Gd, Y) nanocrystals

  • Songzhu Lin
  • Xiangting Dong
  • Ruokun Jia
  • Yanlin Yuan
Article

Abstract

Lanthanide orthophosphate LnPO4 (Ln = La, Gd, Y) nanocrystals with different crystalline structures and morphologies were synthesized successfully by a hydrothermal method under mild conditions. The obtained LaPO4 have a monoclinic or hexagonal structure with varying the temperature. However, as to GdPO4 and YPO4, the temperature has no obvious effect on their structures. By tuning the amount of cetyltrimethylammonium bromide (CTAB), the morphology and size of all samples can be controlled easily and effectively. Noticeably, the structure of YPO4 can also be controlled by using the CTAB. A systematic study of the photoluminescence in Ln3+-doped lanthanide phosphates shows that the luminescent properties of these nanophosphors are strongly dependent on their crystal structures and morphologies.

References

  1. 1.
    P.F. Barbara, Acc. Chem. Res. 32, 387 (1999). doi:10.1021/ar990060d CrossRefGoogle Scholar
  2. 2.
    S.J. Park, T.A. Taton, C.A. Mirkin, Science 295, 1503 (2002). doi:10.1126/science.1066348 CrossRefPubMedADSGoogle Scholar
  3. 3.
    A.T. Bell, Science 299, 1688 (2003). doi:10.1126/science.1083671 CrossRefPubMedADSGoogle Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001). doi:10.1126/science.1060367 CrossRefPubMedADSGoogle Scholar
  5. 5.
    M. Law, H. Kind, B. Messer, F. Kim, P.D. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002). doi:10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3 CrossRefGoogle Scholar
  6. 6.
    J. Hu, L. Li, W. Yang, L. Manna, L. Wang, A.P. Alivisatos, Science 292, 2060 (2001). doi:10.1126/science.1060810 CrossRefPubMedGoogle Scholar
  7. 7.
    L. Li, J. Ho, W. Wang, A.P. Alivisatos, Nano. Lett. 1, 349 (2001). doi:10.1021/nl015559r CrossRefADSGoogle Scholar
  8. 8.
    N. Pinna, K. Weiss, J. Urban, M.P. Pileni, Adv. Mater. 13, 261 (2001). doi:10.1002/1521-4095(200102)13:4<261::AID-ADMA261>3.0.CO;2-X CrossRefGoogle Scholar
  9. 9.
    N. Cordente, M. Respaud, F. Senocq, M.J. Casanove, C. Amiens, B. Chaudret, Nano. Lett. 1, 565 (2001). doi:10.1021/nl0100522 CrossRefADSGoogle Scholar
  10. 10.
    V.F. Puntes, K.M. Kroshnan, A.P. Alivisatos, Science 291, 2115 (2001). doi:10.1126/science.1057553 CrossRefPubMedADSGoogle Scholar
  11. 11.
    C.F. Wu, W.P. Qin, G.S. Qin, D. Zhao, J.S. Zhang, S.H. Huang, S.Z. Lu, H.Q. Liu, H.Y. Lin, Appl. Phys. Lett. 82, 520 (2003). doi:10.1063/1.1542685 CrossRefADSGoogle Scholar
  12. 12.
    M. Yada, M. Mihara, S. Mouri, M. Kuroki, T. Kijima, Adv. Mater. 12, 309 (2000)Google Scholar
  13. 13.
    K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. 113, 574 (2001). doi:10.1002/1521-3757(20010202)113:3<574::AID-ANGE574>3.0.CO;2-B CrossRefGoogle Scholar
  14. 14.
    H. Ito, Y. Fujishiro, T. Sato, A. Okuwaki, Br. Ceram. Trans. J. 94, 146 (1995)Google Scholar
  15. 15.
    H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Haase, Adv. Mater. 11, 840 (1999). doi:10.1002/(SICI)1521-4095(199907)11:10<840::AID-ADMA840>3.0.CO;2-2 CrossRefGoogle Scholar
  16. 16.
    Y.J. Zhang, H.M. Guan, J. Cryst. Growth 256, 156 (2003). doi:10.1016/S0022-0248(03)01301-0 CrossRefADSGoogle Scholar
  17. 17.
    Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, J. Am. Chem. Soc. 125, 16025 (2003). doi:10.1021/ja037280d CrossRefPubMedGoogle Scholar
  18. 18.
    Y.W. Zhang, Z.G. Yan, L.P. You, R. Si, C.H. Yan, Eur. J. Inorg. Chem. 10, 4099 (2003). doi:10.1002/ejic.200300399 CrossRefGoogle Scholar
  19. 19.
    Z.G. Yan, Y.W. Zhang, L.P. You, R. Si, C.H. Yan, J. Cryst. Growth 262, 410 (2004)ADSGoogle Scholar
  20. 20.
    H. Hoefdraad, M. Steglman, G. Blasse, Chem. Phys. Lett. 32, 1975 (1975). doi:10.1016/0009-2614(75)85106-2 CrossRefGoogle Scholar
  21. 21.
    T. Igrashi, M. Ihara, T. Kusunoki, K. Ohno, Appl. Phys. Lett. 76, 1549 (2000). doi:10.1063/1.126092 CrossRefADSGoogle Scholar
  22. 22.
    B.R. Judd, Phys. Rev. 127, 750 (1962). doi:10.1103/PhysRev.127.750 CrossRefADSGoogle Scholar
  23. 23.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962). doi:10.1063/1.1701366 CrossRefADSGoogle Scholar
  24. 24.
    J.W. Stouwdam, F.C.J.M. van Veggel, Langmuir 20, 11763 (2004). doi:10.1021/la048379g CrossRefPubMedGoogle Scholar
  25. 25.
    J.A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini, M. Bettinelli, Opt. Mater. 19, 259 (2002). doi:10.1016/S0925-3467(01)00188-4 CrossRefADSGoogle Scholar
  26. 26.
    F. Vetrone, J.C. Boyer, J.A. Capobianco, J. Appl. Phys. 96, 661 (2004). doi:10.1063/1.1739523 CrossRefADSGoogle Scholar
  27. 27.
    X.C. Jiang, C.H. Yan, L.D. Sun, Z.G. Wei, C.S. Liao, J. Solid State Chem. 175, 245 (2003). doi:10.1016/S0022-4596(03)00276-7 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Songzhu Lin
    • 1
    • 2
  • Xiangting Dong
    • 1
  • Ruokun Jia
    • 2
  • Yanlin Yuan
    • 2
  1. 1.School of Chemistry and Environmental EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Chemical Engineering InstituteNortheast Dianli UniversityJilinChina

Personalised recommendations