Advertisement

Selective growth of carbon nanotubes using catalyst poisoning and geometric trench

  • Wen-Teng ChangEmail author
Article

Abstract

This work suggests catalyst poisoning and geometric patterned approaches to selectively grow multiwall carbon nanotubes. Ferromagnetic particles as a catalyst for CNTs growth vanish when they are deposited over an aluminum thin film. Additionally, geometric features, such as trenches or cavities, are revealed to be capable of selectively ceasing the growth of CNTs even though catalytic thin films were covered on entire samples by an atmospheric thermal chemical vapor deposition technique.

Keywords

Trench Selective Growth Marangoni Convection Ferromagnetic Metal Catalytic Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank Dr. Sangsoo Noh for helpful comments.

References

  1. 1.
    N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992). doi: 10.1103/PhysRevLett.68.1579 CrossRefPubMedADSGoogle Scholar
  2. 2.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 54 (1996). doi: 10.1038/382054a0 CrossRefADSGoogle Scholar
  3. 3.
    J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367 (1999). doi: 10.1063/1.124377 CrossRefADSGoogle Scholar
  4. 4.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992). doi: 10.1103/PhysRevB.46.1804 CrossRefADSGoogle Scholar
  5. 5.
    J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon 40, 1715–1728 (2002). doi: 10.1016/S0008-6223(02)00011-8 CrossRefGoogle Scholar
  6. 6.
    S. Saito, Science 278, 77 (1997). doi: 10.1126/science.278.5335.77 CrossRefGoogle Scholar
  7. 7.
    W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). doi: 10.1126/science.270.5239.1179 CrossRefADSGoogle Scholar
  8. 8.
    H.H. Chen, W.Y. Uen, C.T. Ku, S.M. Lan, T.N. Yang, Z.-Y. Li, C.-C. Chiang, J. Mater. Sci: Mater. Electron. 20, 407 (2009). doi: 10.1007/s10854-008-9646-9 CrossRefGoogle Scholar
  9. 9.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). doi: 10.1126/science.283.5401.512 CrossRefPubMedADSGoogle Scholar
  10. 10.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395, 878 (1998). doi: 10.1038/27632 CrossRefADSGoogle Scholar
  11. 11.
    H. Ago, K. Murata, M. Yumura, J. Yotani, Appl. Phys. Lett. 82, 8113 (2003). doi: 10.1063/1.1540726 CrossRefGoogle Scholar
  12. 12.
    S. Huang, L. Dai, A.W.H. Mau, Adv. Mater. 14, 1140 (2002). doi: 10.1002/1521-4095(20020816)14:16<1140::AID-ADMA1140>3.0.CO;2-5 CrossRefGoogle Scholar
  13. 13.
    E.G. Gamaly, T.W. Ebbesen, Phys. Rev. B 52, 2083 (1995). doi: 10.1103/PhysRevB.52.2083 CrossRefADSGoogle Scholar
  14. 14.
    S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315, 25 (1999). doi: 10.1016/S0009-2614(99)01216-6 CrossRefADSGoogle Scholar
  15. 15.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996). doi: 10.1126/science.274.5293.1701 CrossRefPubMedADSGoogle Scholar
  16. 16.
    H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000). doi: 10.1063/1.126164 CrossRefADSGoogle Scholar
  17. 17.
    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998). doi: 10.1126/science.282.5391.1105 CrossRefPubMedADSGoogle Scholar
  18. 18.
    M. Błachnio, P. Staszczuk, G. Grodzicka, L. Lin, Y.X. Zhu, J. Therm. Anal. Calorim. 88, 601 (2007). doi: 10.1007/s10973-006-8067-3 CrossRefGoogle Scholar
  19. 19.
    P.L. Chen, J.K. Chang, C.T. Kuo, F.M. Pan, Appl. Phys. Lett. 86, 123111 (2005). doi: 10.1063/1.1886260 CrossRefADSGoogle Scholar
  20. 20.
    H. Pan, H. Gao, S.H. Lim, Y.P. Feng, J. Lin, J. Nanosci. Nanotechnol. 4, 1014 (2004). doi: 10.1166/jnn.2004.126 CrossRefPubMedGoogle Scholar
  21. 21.
    T. Cebeci, A.M.O. Smith, J. Basic Eng. 92, 523–535 (1970)Google Scholar
  22. 22.
    H. Kind, J.M. Bonard, C. Emmenegger, L.O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlapbach, L. Forró, K. Kern, Adv. Mater. 11, 1285 (1999). doi: 10.1002/(SICI)1521-4095(199910)11:15<1285::AID-ADMA1285>3.0.CO;2-J CrossRefGoogle Scholar
  23. 23.
    X. Xu, G.R. Brandes, Appl. Phys. Lett. 74, 2549 (1999). doi: 10.1063/1.123894 CrossRefADSGoogle Scholar
  24. 24.
    S. Sauerland, G. Lohofer, I. Egry, J. Non-Cryst. Solids 156, 883 (1993). doi: 10.1016/0022-3093(93)90080-H CrossRefGoogle Scholar
  25. 25.
    A.S. Grove, Ind. Eng. Chem. 58, 48 (1966). doi: 10.1021/ie50679a007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational University of KaohsiungNan-Tzu District, KaohsiungTaiwan

Personalised recommendations