Advertisement

Structural, optical and electrical characteristics of transparent bismuth vanadate films deposited on indium tin oxide coated glass substrates

  • Neelam Kumari
  • S. B. Krupanidhi
  • K. B. R. VarmaEmail author
Article

Abstract

Bismuth vanadate (BVO) thin films were fabricated on indium tin oxide (ITO) coated glass substrates using pulsed laser ablation technique and investigated their structural, optical and electrical properties. The use of the indium tin oxide coated glass substrate resulted in reducing the leakage current characteristics of crystalline BVO thin films. The X-ray diffraction (XRD) studies confirmed the monophasic nature of the post annealed (500 °C/1 h) films. The atomic force microscopy indicated the homogeneous distribution of crystallites in the as-deposited films. The as-deposited and the post annealed films were almost 90% transparent (380–900 nm) as confirmed by optical transmission studies. Dielectric constant of around 52 was attained accompanied by the low dielectric loss of 0.002 at 10 kHz for post annealed films. The leakage current of the post annealed BVO films on ITO coated glass substrates measured at room temperature was 8.1 × 10−8 A at an applied electric field of 33 kV/cm, which was lower than that of the films with platinum and SrRuO3 as the bottom electrodes.

Keywords

Oxygen Vacancy Optical Transmission Spectrum Atomic Force Microscope Study Coated Glass Substrate Pulse Laser Deposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.F. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989)CrossRefADSPubMedGoogle Scholar
  2. 2.
    R. Watton, M.A. Todd, Ferroelectrics 118, 279 (1991)Google Scholar
  3. 3.
    D.L. Polla, Microelectron. Eng. 29, 51 (1995)CrossRefADSGoogle Scholar
  4. 4.
    C.E. Land, P.D. Thacher, G.H. Haertling, Appl. Solid State Sci. 4, 137 (1974)Google Scholar
  5. 5.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefADSGoogle Scholar
  6. 6.
    H.N. Lee, D. Hesse, N. Zakharov, U. Gosele, Science 296, 2006 (2002)CrossRefADSPubMedGoogle Scholar
  7. 7.
    J.H. Bahng, M. Lee, H.L. Park, W.I. Kim, J.H. Jeong, K.J. Kim, Appl. Phys. Lett. 79, 1664 (2001)CrossRefADSGoogle Scholar
  8. 8.
    A. Kingon, Nature 401, 658 (1999)CrossRefADSGoogle Scholar
  9. 9.
    B. Aurivillius, Nature 2, 519 (1950)Google Scholar
  10. 10.
    A.A. Bush, Y.N. Venevtsev, Russ. J. Inorg. Chem 31(5), 769 (1986)Google Scholar
  11. 11.
    V.G. Osipian, L.M. Savchenk, V.L. Elbakyan, P.B. Avakyan, Inorg. Mat. 23, 467 (1987)Google Scholar
  12. 12.
    K.V.R. Prasad, K.B.R. Varma, A.R. Raju, K.M. Satyalakshmi, R.M. Mallya, M.S. Hegde, Appl. Phys. Lett. 63, 1898 (1993)CrossRefADSGoogle Scholar
  13. 13.
    T. Sakai, T. Watanabe, Y. Cho, K. Matuura, H. Finakobo, Jpn. J. Appl. Phys. 40, 6481 (2001)CrossRefADSGoogle Scholar
  14. 14.
    K. Tsukada, T. Nagahama, M. Sohma, I. Yamaguchi, T. Manabe, T. Tsuchiya, S. Suzuki, T. Shimizu, S. Mizuta, T. Kumagai, Thin Solid Films 425, 97 (2003)CrossRefADSGoogle Scholar
  15. 15.
    N. Kumari, S.B. Krupanidhi, K.B.R. Varma, Mater. Sci. Eng. B 138, 22 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Joseph, H.Y. Lee, H. Tabata, T. Kawai, J. Appl. Phys. 88, 1193 (2000)CrossRefADSGoogle Scholar
  17. 17.
    M. Guo, H. Deng, P. Yang, J. Chu, Mater. Lett. 63, 1535 (2009)CrossRefGoogle Scholar
  18. 18.
    Z. Huang, P. Yang, Y. Chang, J. Chu, J. Appl. Phys. 86, 1771 (1999)CrossRefADSGoogle Scholar
  19. 19.
    N. Kumari, S.B. Krupanidhi, K.B.R. Varma, Appl. Phys. A 91, 693 (2008)CrossRefADSGoogle Scholar
  20. 20.
    P. Yang, J. Xu, J. Ballato, R. Schwartz, D. Carroll, Appl. Phys. Lett. 80, 3394 (2002)CrossRefADSGoogle Scholar
  21. 21.
    A. Petraru, J. Schubert, M. Schmid, C. Buchal, Appl. Phys. Lett. 81, 1375 (2002)CrossRefADSGoogle Scholar
  22. 22.
    C.W. Han, H.S. Shin, J.H. Park, M.K. Han, H.S. Pang, K.Y. Kim, I.J. Chung, S.W. Pyo, D.H. Lee, Y.K. Kim, Phys. Scr. T 126, 41 (2006)CrossRefADSGoogle Scholar
  23. 23.
    C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett. 70, 1348 (1997)CrossRefADSGoogle Scholar
  24. 24.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradely, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121 (1999)CrossRefADSGoogle Scholar
  25. 25.
    W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, B.A. Tuttle, J. Amer. Ceram. Soc. 79, 536 (1996)CrossRefGoogle Scholar
  26. 26.
    J.C. Tauc, Optical Properties of Solids, vol. 372. (North-Holland, Amsterdam, 1972)Google Scholar
  27. 27.
    N. Kumari, K.B.R. Varma, S.B. Krupanidhi, Mater. Sci. Eng. B 153, 36 (2008)CrossRefGoogle Scholar
  28. 28.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)CrossRefADSGoogle Scholar
  29. 29.
    R. Swanepoel, J. Phys. E 17, 896 (1984)CrossRefADSGoogle Scholar
  30. 30.
    G. Xu, P. Jin, M. Tazawa, Thin Solid Films 425, 196 (2003)CrossRefADSGoogle Scholar
  31. 31.
    S.Z. Li, Y.Q. Yang, L. Liu, W.C. Liu, S.B. Wang, Physica B 403, 2618 (2008)CrossRefADSGoogle Scholar
  32. 32.
    A.S. Shaikh, R.W. Vest, G.M. Vest, IEEE Trans Ultrasonics Ferroelectrics and Frequency Control 36, 407 (1989)CrossRefGoogle Scholar
  33. 33.
    A.J. Bell, A.J. Moulson, L.E. Cross, Ferroelectrics 54, 147 (1984)Google Scholar
  34. 34.
    G. Arlt, D. Hennings, G. De With, J. Appl. Phys. 58, 1619 (1985)CrossRefADSGoogle Scholar
  35. 35.
    M. Lampert, A. Rose, Phys. Rev. 103, 1648 (1956)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Neelam Kumari
    • 1
  • S. B. Krupanidhi
    • 1
  • K. B. R. Varma
    • 1
    Email author
  1. 1.Materials Research CenterIndian Institute of scienceBangaloreIndia

Personalised recommendations