Rate-dependent deformation of Sn–3.5Ag lead-free solder

Article

Abstract

Compression experiments on bulk Sn-3.5Ag lead-free solder specimens have been carried out to help formulate the material constitutive behaviour of this alloy using the concept of an evolving internal stress. Tests covered the temperature range 0–125 °C and fixed strain rates between 3 × 10−7–3 × 10−3 s−1. Flow behaviour was found to be compatible with that for a deforming a tin-rich matrix (stress exponent n = 7, activation energy Q = 46.7 kJ/mol) in which the external applied stress is reduced by an internal back stress due to the presence of precipitate phase particles. Stress–strain curves have been satisfactorily modelled using rate equations incorporating linear hardening and diffusion-controlled recovery. Comparison with supplementary tension and creep experiments, and with data from other researchers, indicates that inconsistencies in reported flow behaviour is most likely to be due to variations in initial microstructure rather than the nature of the applied loading.

References

  1. 1.
    W.J. Plumbridge, C.R. Gagg, S. Peters, J. Electron. Mater. 30, 1178 (2001). doi:10.1007/s11664-001-0147-3 CrossRefADSGoogle Scholar
  2. 2.
    H.G. Song, J.W. Morris Jr., F. Hua, JOM 54, 30 (2002). doi:10.1007/BF02701846 CrossRefGoogle Scholar
  3. 3.
    R.S. Sidhu, X. Deng, N. Chawla, Metall. Mater. Trans. A 39, 349 (2008). doi:10.1007/s11661-007-9412-2 CrossRefGoogle Scholar
  4. 4.
    J. Gong, C. Liu, P. Conway, V. Silberschmidt, Mater. Sci. Eng. A 427, 60 (2006). doi:10.1016/j.msea.2006.04.034 CrossRefGoogle Scholar
  5. 5.
    R.S. Sidhu, S.V. Madge, X. Deng, N. Chawla, J. Electron. Mater. 26, 1615 (2007). doi:10.1007/s11664-007-0239-9 CrossRefADSGoogle Scholar
  6. 6.
    B.F. Dyson, Rev. Phys. Applique 23, 605 (1988). doi:10.1051/rphysap:01988002304060500 CrossRefGoogle Scholar
  7. 7.
    R.N. Ghosh, M. McLean, Acta Metall. Mater. 40, 3075 (1992). doi:10.1016/0956-7151(92)90470-Y CrossRefGoogle Scholar
  8. 8.
    J.C. Ion, A. Barbosa, M.F. Ashby, B.F. Dyson, M. McLean, The modelling of creep for engineering design (National Physical Laboratory Division of Materials Applications, Teddington, 1986)Google Scholar
  9. 9.
    R.S. Sidhu, N. Chawla, Metall. Mater. Trans. A 39, 340 (2008). doi:10.1007/s11661-007-9414-0 CrossRefGoogle Scholar
  10. 10.
    E. Fraizier, M.-H. Nadal, R. Oltra. J. Appl. Phys. 93, 649 (2003). doi:10.1063/1.1525398 CrossRefADSGoogle Scholar
  11. 11.
    R. Lagneborg, B. Bergman, Meat Sci. 10, 20 (1976)Google Scholar
  12. 12.
    M.A. Rist, R.C. Reed, Mater. Sci. Technol. 18, 179 (2002). doi:10.1179/026708301225000554 CrossRefGoogle Scholar
  13. 13.
    J.E. Breen, J. Weertman, Trans. AIME 203, 1230 (1955)Google Scholar
  14. 14.
    M. Fujiwara, M. Otsuka, Mater. Sci. Eng. A 319, 929 (2001). doi:10.1016/S0921-5093(01)01079-6 CrossRefGoogle Scholar
  15. 15.
    S.H. Suh, J.B. Cohen, J. Weertman, Metall. Trans A 14A, 117 (1983)ADSGoogle Scholar
  16. 16.
    W. Lange, D. Bergner, Phys. Status Solidi 2, 1410 (1962). doi:10.1002/pssb.19620021020 CrossRefGoogle Scholar
  17. 17.
    B. Derby, M.F. Ashby, Acta Metall. 35, 1349 (1987). doi:10.1016/0001-6160(87)90017-4 CrossRefGoogle Scholar
  18. 18.
    M.A. Rist, W.J. Plumbridge, S. Cooper, J. Electron. Mater. 35, 1050 (2006). doi:10.1007/BF02692566 CrossRefADSGoogle Scholar
  19. 19.
    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, M. Fine, J. Electron. Mater. 26, 783 (1997). doi:10.1007/s11664-997-0252-z CrossRefADSGoogle Scholar
  20. 20.
    M.D. Mathew, S. Movva, K.L. Murty, Key Eng. Mater. 171–174, 655 (2000)CrossRefGoogle Scholar
  21. 21.
    F. Ochoa, X. Deng, N. Chawla, J. Electron. Mater. 33, 1596 (2004). doi:10.1007/s11664-004-0103-0 CrossRefADSGoogle Scholar
  22. 22.
    K. Wu, N. Wade, J. Cui, K. Miyahara, J. Electron. Mater. 32, 5 (2003). doi:10.1007/s11664-003-0245-5 CrossRefADSGoogle Scholar
  23. 23.
    R.J. McCabe, M.E. Fine, Metall. Mater. Trans. A 33, 1531 (2002). doi:10.1007/s11661-002-0075-8 CrossRefGoogle Scholar
  24. 24.
    F.A. Mohamed, K.L. Murty, J.W. Morris Jr., Metall. Trans. 4, 935 (1973). doi:10.1007/BF02645593 CrossRefGoogle Scholar
  25. 25.
    P. Adeva, G. Caruana, O.A. Ruano, M. Torralba, Mater. Sci. Eng. A 194, 17 (1995). doi:10.1016/0921-5093(94)09654-6 CrossRefGoogle Scholar
  26. 26.
    C.M.L. Wu, M.L. Huang, J. Electron. Mater. 31, 442 (2002). doi:10.1007/s11664-002-0098-3 CrossRefADSGoogle Scholar
  27. 27.
    E.P. Busso, M. Kitano, T. Kumazawa, J. Eng. Mater. Technol. 114, 331 (1992). doi:10.1115/1.2904181 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Open UniversityMilton KeynesUK

Personalised recommendations