Effect of γ-irradiation on the sheet resistance of two-dimensional island platinum films

  • S. El-Gamal
  • A. G. Bishay
  • W. Fikry
  • S. M. Diab
  • S. Eid


Four sets (A, B, C, and D) of two-dimensional island platinum films were prepared via the thermal evaporation technique. The mass thicknesses of the films of the different sets are 1, 5, 10, and 20 Å, respectively. The sheet resistance of these films was found experimentally from knowing the d.c. resistance of the films. Before exposing the films to γ-rays, we monitored the increase in the sheet resistance in air with time (aging) till short-term stability for the films was achieved. The stabilized films were exposed to γ-rays such that the different doses are 100, 200, 300, 500, and 700 Gy using 137Cs (0.662 MeV) radiation source with dose rate 0.5 Gy/min. It was found that; (i) the sheet resistance of the investigated films decreases with the increase in the dose, (ii) for any particular mass thickness, the value of the fractional change in sheet resistance increases with the increase in dose, (iii) for any particular dose the increase in the fractional change in sheet resistance becomes more pronounced with the increase in mass thickness. Qualitative interpretation for our results was given on the ground that γ-rays changed the shape of islands from spherical to prolate.


Prolate Sheet Resistance Fractional Change Island Film Mass Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Korostynska, K. Arshak, D. Morris, A. Arshak, E. Jafer, Mater. Sci. Eng. B 141, 115 (2007). doi: 10.1016/j.mseb.2007.06.025 CrossRefGoogle Scholar
  2. 2.
    K. Arshak, O. Korostynska, Mater. Sci. Eng. B 133, 1 (2006). doi: 10.1016/j.mseb.2006.06.012 CrossRefGoogle Scholar
  3. 3.
    K. Arshak, J. Corcoran, O. Korostynska, Sens. Actuat. A 123–124, 194 (2005). doi: 10.1016/j.sna.2005.01.014 Google Scholar
  4. 4.
    H.M. Abdel-hamid, S.M. Sayed, R.M. Radwan, Nucl. Instr. Meth.: Phys. Res. B 215, 479 (2004)CrossRefADSGoogle Scholar
  5. 5.
    P. Sharmaa, M. Vashisthab, I.P. Jain, Radiat. Meas. 36, 663 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Antohe, V. Ruxandra, H. Alexandru, J. Cryst. Growth 237–239, 1559 (2002)CrossRefGoogle Scholar
  7. 7.
    T.J. Coutts, Electrical Conduction in Metal Films (Elsevier, Amsterdam, 1974), p. 111Google Scholar
  8. 8.
    E. Broitman, R. Zimmerman, Thin Solid Films 317, 440 (1998)CrossRefADSGoogle Scholar
  9. 9.
    A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, J. Phys. D: Appl. Phys. 33, 2218 (2000)CrossRefADSGoogle Scholar
  10. 10.
    T.J. Coutts, Active and Passive Thin Film Devices (Academic Press, New York, 1978), p. 187Google Scholar
  11. 11.
    A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, J. Mater. Sci: Mater. Electron. 17, 489 (2006)CrossRefGoogle Scholar
  12. 12.
    A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, J. Mater. Sci: Mater. Electron. 17, 71 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Filenko, T. Gotszalk, Z. Kazantseva, O. Rabinovych, I. Koshets, Yu. Shirshov, V. Kalchenko, I.W. Rangelowb, Sens. Actuat. B 111(112), 264 (2005)CrossRefGoogle Scholar
  14. 14.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 112(13), 5942 (2000)CrossRefADSGoogle Scholar
  15. 15.
    A.M. Darwish, A.G. Bishay, J. Mater. Sci: Mater. Electron. 4, 192 (1993)CrossRefGoogle Scholar
  16. 16.
    A.G. Bishay, A.M. Darwish, D.A. Abdelhady, J. Mater. Sci: Mater. Electron. 6, 419 (1995)CrossRefGoogle Scholar
  17. 17.
    C. Vieu, J. Gierak, C. David, Y. Lagadec, A. Bourlange, D. Larigaldie, Z. Wang, J. Flicstein, H. Launois, Microelectronic Eng. 35, 349 (1997)CrossRefGoogle Scholar
  18. 18.
    F.P. Fehlner, Advances in Vacuum Science and Technology, vol. 2, part 3, Proceedings of 3rd International Congress in Vacuum Techniques, 28 June–2 July, 1965, Stuttgart, GermanyGoogle Scholar
  19. 19.
    A.G. Bishay, H. Hunter, W. Fikry, H.F. Ragaie, J. Mater. Sci: Mater. Electron. 14, 115 (2003)CrossRefGoogle Scholar
  20. 20.
    K. Rajanna, S. Mohan, Thin Solid Films 172, 45 (1989)CrossRefADSGoogle Scholar
  21. 21.
    W.R. Holland, D.G. Hall, Phys. Rev. Lett. 52, 1041 (1984)CrossRefADSGoogle Scholar
  22. 22.
    E. Hedborg, F. Winquist, H. Sundgren, I. Lundström, Thin Solid Films 340, 250 (1999)CrossRefADSGoogle Scholar
  23. 23.
    T. Yamaguchi, S. Yoshida, A. Kinbara, Thin Solid Films 21, 173 (1974)CrossRefADSGoogle Scholar
  24. 24.
    M.S. Raven, Phys. Rev. B 29(11), 6218 (1984)CrossRefADSGoogle Scholar
  25. 25.
    A.G. Bishay, D.A. Abdelhady, A.M. Darwish, J. Mater. Sci: Mater. Electron. 3, 195 (1992)CrossRefGoogle Scholar
  26. 26.
    Y. Bilotsky, P.M. Tomchuk, Surf. Sci. 600, 4702 (2006)CrossRefADSGoogle Scholar
  27. 27.
    R.M. Delvecchio, Thin Solid Films 61, 65 (1979)CrossRefADSGoogle Scholar
  28. 28.
    J.E. Morris, F. Wu, Thin Solid Films 317, 178 (1998)CrossRefADSGoogle Scholar
  29. 29.
    A.G. Bishay, W. Fikry, H. Hunter, H.F. Ragaie, Phys. Stat. Sol. (a) 199(3), 475 (2003)CrossRefGoogle Scholar
  30. 30.
    R.D. Fedorovich, D.S. Inosov, O.E. Kiyaev, S.P. Lukyanets, A.A. Marchenko, P.M. Tomchuk, D.A. Bevzenko, A.G. Naumovets, J. Mol. Struct. 708, 67 (2004)CrossRefADSGoogle Scholar
  31. 31.
    N. Dmitruk, I. Dmitruk, V. Romaniuk, T. Mikhailik, T. Wagner, Scr. Mater. 44, 1199 (2001)CrossRefGoogle Scholar
  32. 32.
    P. Borziak, Yu. Kulyupin, P. Tomchuk, Thin Solid Films 30, 47 (1975)CrossRefADSGoogle Scholar
  33. 33.
    R.M. Hill, Proc. R. Soc. London A 309, 377 (1969)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. El-Gamal
    • 1
  • A. G. Bishay
    • 2
  • W. Fikry
    • 2
  • S. M. Diab
    • 1
  • S. Eid
    • 2
  1. 1.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Engineering Mathematics and Physics Department, Faculty of EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations