Advertisement

Ferromagnetism in Cu-doped ZnO nanoparticles at room temperature

  • H. L. Liu
  • J. H. YangEmail author
  • Y. J. Zhang
  • Y. X. Wang
  • M. B. Wei
  • D. D. Wang
  • L. Y. Zhao
  • J. H. Lang
  • M. Gao
Article

Abstract

Cu-doped ZnO nanoparticles were successfully synthesized and structurally characterized by using X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD shows that Zn1−xCuxO (x ≤ 0.04) samples are single phase with the ZnO-like wurtzite structure, while the secondary phase Cu is observed in Zn0.95Cu0.05O sample. Magnetic measurements indicated that Zn1−xCuxO (x = 0.02, 0.03, 0.04) are ferromagnetic at room temperature and the magnetic moment per Cu atom decreased with increasing Cu concentration. XRD, TEM and X-ray photoelectron spectroscopy (XPS) analysis revealed that no ferromagnetic-related secondary phase was detected. The origin of the ferromagnetism in Zn1−xCuxO (x ≤ 0.04) was mainly due to Cu ions substituted into the ZnO lattice.

Keywords

Magnetic Semiconductor Room Temperature Ferromagnetism Citric Acid Complex Exhibit Room Temperature Short Separation Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the financial support of the National Nature Science Foundation of China (Grant Nos. 60778040), the Science and Technology program of “11th five-Year” of Education for Jilin province (No. 20070162 and 20070161) and the Science and Technology bureau of Key Program for Ministry of Education (Item No. 207025).the science and technology bureau of Jilin province (Item No. 20060518) and gifted youth program of Jilin province (No. 20060123).

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. vonMolnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)CrossRefPubMedADSGoogle Scholar
  2. 2.
    A.P. Gary, Science 282, 1660 (1998)CrossRefGoogle Scholar
  3. 3.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefPubMedADSGoogle Scholar
  4. 4.
    R. Janisch, P. Gopal, N.A. Spaldin, J. Phys. Condens. Matter. 17, R657 (2005)CrossRefADSGoogle Scholar
  5. 5.
    T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, L. Wang, M. Tanemura et al., Phys. Lett. 90, 032509 (2007)Google Scholar
  6. 6.
    H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee et al., Appl. Phys. Lett. 88, 242507 (2006). doi: 10.1063/1.2212277 CrossRefADSGoogle Scholar
  7. 7.
    X.C. Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, B. Xiao, L.X. Song, Appl. Phys. Lett. 88, 252503 (2006)CrossRefADSGoogle Scholar
  8. 8.
    M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, I.T. Ferguson, J. Appl. Phys. 97, 023906 (2005)CrossRefADSGoogle Scholar
  9. 9.
    X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, W. Shi, Appl. Phys. Lett. 88, 062508 (2006)Google Scholar
  10. 10.
    L.Q. Liu, B. Xiang, X.Z. Zhang, Y. Zhang, D.P. Yu, Appl. Phys. Lett. 88, 063104 (2006)CrossRefADSGoogle Scholar
  11. 11.
    D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasguptaand G.P. Das, Phys. Rev. B 75, 144404 (2007)Google Scholar
  12. 12.
    M. Wei, N. Braddon, D. Zhi, P.A. Midgley, S.K. Chen, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 72514 (2005)CrossRefGoogle Scholar
  13. 13.
    L.-H. Ye, A.J. Freeman, B. Delley, Phys. Rev. B 73, 033203 (2006)CrossRefADSGoogle Scholar
  14. 14.
    L.M. Huang, A.L. Rosa, Phys. Rev. B 74, 075206 (2006). doi: 10.1103/PhysRevB.74.075206 CrossRefADSGoogle Scholar
  15. 15.
    C. Sudakar, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, B. Delley, Phys. Rev. B 75, 054423 (2007). doi: 10.1103/PhysRevB.75.054423 CrossRefADSGoogle Scholar
  16. 16.
    T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, X.H. Ji, J.S. Chen et al., J. Appl. Phys. 99, 086101 (2006). doi: 10.1063/1.2190711 CrossRefADSGoogle Scholar
  17. 17.
    M.H. Kane, M. Strassburg, A. Asghar, Q. Song, S. Gupta, J. Senawiratne et al., Proc. SPIE 5732, 389 (2005)CrossRefADSGoogle Scholar
  18. 18.
    J.H. Yang, L.Y. Zhao, Y.J. Zhang, Y.X. Wang, H.L. Liu, M.B. Wei, Solid State Commun. 143, 566 (2007). doi: 10.1016/j.ssc.2007.06.033 CrossRefADSGoogle Scholar
  19. 19.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)CrossRefADSGoogle Scholar
  20. 20.
    M.S. Park, B.I. Min, Phys .Rev. B 68, 224436 (2003). doi: 10.1103/PhysRevB.68.224436 CrossRefADSGoogle Scholar
  21. 21.
    C.-H. Chien, S.H. Chiou, G.Y. Gao, Y.-D. Yao, J. Magn. Magn. Mater. 282, 275 (2004)CrossRefADSGoogle Scholar
  22. 22.
    J.H. Shim, T. Hwang, S. Lee, Appl. Phys. Lett. 86, 082503 (2005)CrossRefADSGoogle Scholar
  23. 23.
    X. Wang, J.B. Xu, W.Y. Cheung, J. An, N. Ke, Appl. Phys. Lett. 90, 212502 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. L. Liu
    • 1
    • 2
    • 3
  • J. H. Yang
    • 1
    • 2
    • 3
    Email author
  • Y. J. Zhang
    • 3
  • Y. X. Wang
    • 3
  • M. B. Wei
    • 3
  • D. D. Wang
    • 1
    • 2
    • 3
  • L. Y. Zhao
    • 3
  • J. H. Lang
    • 3
  • M. Gao
    • 3
  1. 1.Key Laboratory of Excited State ProcessesChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Physics College of Jilin Normal UniversityJilin ProvinceChina

Personalised recommendations