Sintering mechanisms in aluminum nitride with Y or Ca-containing additive

  • A. L. MolisaniEmail author
  • H. N. Yoshimura
  • H. Goldenstein


AlN with 4 wt.% Y2O3 or CaO were prepared by sintering in dilatometer and conventional furnace up to 1850 °C. The aim of this work was to compare the sintering behavior and mechanisms related with the densification of AlN with Y or Ca-containing additives. The sample with Y2O3 approached 33% of total densification by solid-state sintering process preceding the liquid phase formation, which was near 1700 °C. After the formation of liquid an overheating of only 50 °C was needed for this sample to achieve full density. The sample with CaO formed liquid-phase near 1400 °C, but required a higher overheating (>300 °C) in order to achieve full density. The densification of the sample with CaO was retarded by: (i) high viscosity of the liquid-phase formed below 1600 °C; (ii) formation of large pores; and (iii) gas entrapped inside the pores.


Y2O3 Calcium Aluminate Shrinkage Rate Linear Shrinkage Full Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Brazilian agencies FAPESP and CNPq for the financial support of the present research.


  1. 1.
    Y. Baik, R.A.L. Drew, Key Eng. Mater. 122–124, 553 (1996)CrossRefGoogle Scholar
  2. 2.
    A.V. Virkar, T.B. Jackson, K.L. More, R.A. Cutler, J. Am. Ceram. Soc. 80, 1421 (1997)Google Scholar
  3. 3.
    D. Palit, A.M. Meier, J. Mater. Sci. 41, 7197 (2006). doi: 10.1007/s10853-006-0920-z CrossRefADSGoogle Scholar
  4. 4.
    I.-L. Tangen, Y. Yu, T. Grande, R. Hoier, M.-A. Einarsrud, J. Am. Ceram. Soc. 87, 1734 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Tanigushi, S. Kikutani, N. Kuramoto, in Proceeding of the 4th International Symposium on Science and Techonology of Sintering, Tokyo, 956 (1987)Google Scholar
  6. 6.
    T. Sakai, M. Iwata, J. Mater. Sci. 12, 1659 (1977). doi: 10.1007/BF00542817 CrossRefADSGoogle Scholar
  7. 7.
    J. Li, M. Nakamura, T. Shirai, K. Matsumaru, C. Ishizaki, K. Ishizaki, J. Am. Ceram. Soc. 89, 937 (2006). doi: 10.1111/j.1551-2916.2005.00767.x CrossRefGoogle Scholar
  8. 8.
    G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987). doi: 10.1016/0022-3697(87)90153-3 CrossRefADSGoogle Scholar
  9. 9.
    Y. Kurokawa, K. Utsumi, H. Takamizawa, J. Am. Ceram. Soc. 71, 588 (1988). doi: 10.1111/j.1151-2916.1988.tb05924.x CrossRefGoogle Scholar
  10. 10.
    J.-Y. Qiu, Y. Hotta, K. WatarI, K. Mitsuishi, M. Yamazaki, J. Eur. Ceram. Soc. 26, 385 (2006). doi: 10.1016/j.jeurceramsoc.2005.06.016 CrossRefGoogle Scholar
  11. 11.
    K. Komeya, H. Inoue, A. Tsuge, Yogyo-KyoKai-Shi 89, 330 (1981)Google Scholar
  12. 12.
    N. Kuramoto, H. Taniguchi, I. Aso, Am. Ceram. Soc. Bull. 68, 883 (1989)Google Scholar
  13. 13.
    A. Geith, M. Kulig, T. Hofmann, C. Rüssel, J. Mater. Sci. 28, 865 (1993). doi: 10.1007/BF00400866 CrossRefADSGoogle Scholar
  14. 14.
    K. Watari, H.J. Hwang, M. Toriyama, S. Kanzaki, J. Mater. Res. 14, 1409 (1999). doi: 10.1557/JMR.1999.0191 CrossRefADSGoogle Scholar
  15. 15.
    E.M. Levin, C.R. Robbins, H.F. Mcmuridie, in Supplement phase diagrams for ceramics, The American Ceramic Society, Columbus, Fig. 2344 (1964)Google Scholar
  16. 16.
    E.M. Levin, C.R. Robbins, H.F. Mcmuridie, in Supplement phase diagrams for ceramics, The American Ceramic Society, Columbus, Fig. 231 (1964)Google Scholar
  17. 17.
    K. Shinozaki, Y. Sawada, N. Mizutani, in Proceedings of the workshop Mass and Charge transport in Ceramics, Nagoya, 307 (1996)Google Scholar
  18. 18.
    K. Komeya, A. Tsuge, H. Inoue, H. Ohta, J. Mater. Sci. Lett. 1, 325 (1982). doi: 10.1007/BF00726476 CrossRefGoogle Scholar
  19. 19.
    M.-C. Wang, C.-C. Yang, N.-C. Wu, Mater. Sci. Eng. 343A, 97 (2003)Google Scholar
  20. 20.
    A.L. Molisani, H.N. Yoshimura, H. Goldenstein, Cerâmica 52, 151 (2006). doi: 10.1590/S0366-69132006000200006 CrossRefGoogle Scholar
  21. 21.
    A.L. Molisani, H.N. Yoshimura, H. Goldenstein, K. Watari, J. Eur. Ceram. Soc. 26, 3431 (2006). doi: 10.1016/j.jeurceramsoc.2005.08.010 CrossRefGoogle Scholar
  22. 22.
    J. Jarrige, K. Bouzouita, C. Doradoux, M. Billy, J. Eur. Ceram. Soc. 12, 279 (1993). doi: 10.1016/0955-2219(93)90103-X CrossRefGoogle Scholar
  23. 23.
    E. Streicher, T. Chartier, P. Boch, M.-F. Denonat, J. Rabier, J. Eur. Ceram. Soc. 6, 23 (1990). doi: 10.1016/0955-2219(90)90031-A CrossRefGoogle Scholar
  24. 24.
    N.S. Raghavan, Mater. Sci. Eng. A148, 307 (1991). doi: 10.1016/0921-5093(91)90833-9 Google Scholar
  25. 25.
    C. Koestler, H. Bestgen, A. Roosen, W. Boecker, Third Euro-Ceramic, 1, 1993, p. 913Google Scholar
  26. 26.
    K. Watari, M. Brito, M. Yasuoka, M.C. Valecillos, K.J. Kanzaki, J. Ceram. Soc. Japan 103, 891 (1995)Google Scholar
  27. 27.
    K. Watari, M.C. Valecillos, M.E. Brito, M. Toriyama, S. Kanzaki, J. Am. Ceram. Soc. 79, 3103 (1996). doi: 10.1111/j.1151-2916.1996.tb08083.x CrossRefGoogle Scholar
  28. 28.
    R. Zahneisen, C. Rüssel, J. Mater. Sci. 28, 870 (1993). doi: 10.1007/BF00400867 CrossRefADSGoogle Scholar
  29. 29.
    M. Tajika, W. Rafaniello, K. Niihara, Mater. Lett. 46, 98 (2000). doi: 10.1016/S0167-577X(00)00149-X CrossRefGoogle Scholar
  30. 30.
    R. Terao, J. Tatami, T. Meguro, J. Eur. Ceram. Soc. 22, 1051 (2002). doi: 10.1016/S0955-2219(01)00422-8 CrossRefGoogle Scholar
  31. 31.
    E.T. Stepkowska, M.A. Aviles, J.M. Blanes, J.L. Perez-Rodriguez, J. Therm. Analys. Calorim. 87, 189 (2007). doi: 10.1007/s10973-006-7840-7 CrossRefGoogle Scholar
  32. 32.
    J.M. Criado, M. González, J. Málek, A. Ortega, Thermochimica Acta 254, 121 (1995). doi: 10.1016/0040-6031(94)01998-V CrossRefGoogle Scholar
  33. 33.
    A. Hafidi, M. Billy, J.P. Lecompte, J. Mater. Sci. 27, 3405 (1992). doi: 10.1007/BF01116044 CrossRefADSGoogle Scholar
  34. 34.
    S.-M. Lee, S.-J.L. Kang, Acta Mater. 46, 3191 (1998). doi: 10.1016/S1359-6454(97)00489-8 CrossRefGoogle Scholar
  35. 35.
    E. Hagen, Y. Yu, T. Grande, R. Hoier, M.-A. Einarsrud, J. Am. Ceram. Soc. 85, 2971 (2002)Google Scholar
  36. 36.
    W. Dong, H. Jain, M.P. Harmer, J. Am. Ceram. Soc. 88, 1714 (2005). doi: 10.1111/j.1551-2916.2005.00149.x CrossRefGoogle Scholar
  37. 37.
    P.S. de Baranda, A.K. Knudsen, E. Ruh, J. Am. Ceram. Soc. 77(7), 1846 (1994). doi: 10.1111/j.1151-2916.1994.tb07060.x CrossRefGoogle Scholar
  38. 38.
    M. Kasori, F. Ueno, J. Eur. Ceram. Soc. 15, 435 (1995). doi: 10.1016/0955-2219(95)91432-N CrossRefGoogle Scholar
  39. 39.
    A.M. Hundere, M.A. Einarsrud, J. Eur. Ceram. Soc. 16, 899 (1996). doi: 10.1016/0955-2219(95)00209-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. L. Molisani
    • 1
    Email author
  • H. N. Yoshimura
    • 2
  • H. Goldenstein
    • 1
  1. 1.Polytechnic School of the University of São PauloSao PauloBrazil
  2. 2.Institute for Technological Research of the State of São PauloSao PauloBrazil

Personalised recommendations