Electrical and transport properties of nickel manganite obtained by Hall effect measurements

  • S. M. SavićEmail author
  • G. M. Stojanović
  • M. V. Nikolić
  • O. S. Aleksić
  • D. T. Luković Golić
  • P. M. Nikolić


Intrinsic resistivity and carrier transport parameters of sintered nickel manganite samples (NTC thermistor grade) were determined using a Hall effect measurement system based on the van der Pauw method. Powder mixtures composed of MnO, NiO and with small amounts of CoO and Fe2O3 were free surface energy activated by milling in an ultra fast planetary mill for 5, 15, 30, 45 and 60 min. The powders were uniaxially pressed with 196 MPa into discs and sintered at 1200 °C for 60 min. Full characterization of nickel manganite samples was done using SEM, EDS and XRD analysis. The Hall effect was measured at different temperatures (room temperature, 50, 80, 100 and 120 °C) with an applied field of 0.37 T and also 0.57 T at room temperature. The activation energy E a (energy of conduction) and the coefficient of temperature sensitivity B 25/80, were calculated from measured resistivity values. The measured mobility, resistivity/conductivity, U-I plots, and Hall coefficients were mutually compared and correlated versus microstructure development and macroscopic parameters such as the powder activation time and ambient temperature.


Hall Measurement Hall Coefficient Negative Temperature Coefficient Hall Effect Measurement Powder Agglomeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to express our gratitude to Dr Goran Branković for SEM measurements. This work was performed as part of project 6150B financed by the Ministry for Science of the Republic of Serbia.


  1. 1.
    O.S. Aleksić, P.M. Nikolić, M.N. Simić, V.Ž. Pejović, D.G. Vasiljević-Radović, Advanced Science and Technology of Sintering (Plenum Pub, 1999), p. 425Google Scholar
  2. 2.
    H.B. Sachse, Semiconducting Temperature Sensors and Their Applications. (Wiley, New York, 1975)Google Scholar
  3. 3.
    O.S Aleksić, S.M. Savić, M.D. Luković, K.T. Radulović, V.Z. Pejović, Mater. Sci. Forum 518, 247 (2006)CrossRefGoogle Scholar
  4. 4.
    M.L. Singla, S. Sharma, B. Raj, V.R. Harchekar, Sens. Actuators A 120, 337 (2005). doi: 10.1016/j.sna.2004.12.014 CrossRefGoogle Scholar
  5. 5.
    P. Umadevi, C.L. Nagendra, Sens. Actuators A 96, 114 (2002). doi: 10.1016/S0924-4247(01)00776-2 CrossRefGoogle Scholar
  6. 6.
    N. Ueda, T. Omata, N. Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto, H. Kawazoe, Appl. Phys. Lett. 61, 1954 (1992). doi: 10.1063/1.108374 CrossRefADSGoogle Scholar
  7. 7.
    E.D. Macklen, Thermistors (Electrochem Pub, Glasgow, 1979) pp. 5–11Google Scholar
  8. 8.
    K. Park, J. Am. Ceram. Soc. 88, 862–866 (2005). doi: 10.1111/j.1551-2916.2004.00170.x CrossRefGoogle Scholar
  9. 9.
    A. Rousset, R.L. Legros, A. Lagrange, J. Eur. Ceram. Soc. 13, 185 (1994). doi: 10.1016/0955-2219(94)90027-2 CrossRefGoogle Scholar
  10. 10.
    V.A.M. Brabers, J.C.J.M. Terhell, Phys. Status Solidi A 69, 325 (1982)CrossRefGoogle Scholar
  11. 11.
    G. Ashcroft, I. Terry, R. Gover, J. Eur. Ceram. Soc. 26, 901 (2006). doi: 10.1016/j.jeurceramsoc.2004.11.023 CrossRefGoogle Scholar
  12. 12.
    E.S. Na, U.G. Paik, S.C. Choi, J. Ceram. Proc. Res. 2, 31 (2001)Google Scholar
  13. 13.
    H. Altenburg, O. Mrooz. J. Plewa, O. Shpotyuk, M. Vakiv, J. Eur. Ceram. Soc. 21, 1787 (2001). doi: 10.1016/S0955-2219(01)00116-9 CrossRefGoogle Scholar
  14. 14.
    S. Asbrink, A. Waskowska, M. Drozd, E. Talik, J. Phys.Chem. Solids 58, 725 (1997). doi: 10.1016/S0022-3697(96)00198-9 CrossRefADSGoogle Scholar
  15. 15.
    P.N. Lisboa-Filho, M. Bahout, P. Barahona, C. Moure, O. Peña, J. Phys. Chem. Solids 66, 1206 (2005). doi: 10.1016/j.jpcs.2005.03.001 CrossRefADSGoogle Scholar
  16. 16.
    S.M. Savić, O.S. Aleksić, M.V. Nikolić, D.T. Luković, V.Ž. Pejović, P.M. Nikolić, Mater. Sci. Eng. B 131, 216 (2006). doi: 10.1016/j.mseb.2006.04.035 CrossRefGoogle Scholar
  17. 17.
    M.V. Nikolić, K.M. Paraskevopoulos, O.S. Aleksić, T.T. Zorba, S.M. Savić, V.D. Blagojević, D.T. Luković, P.M. Nikolić, Mater. Res. Bull. 42, 1492 (2007). doi: 10.1016/j.materresbull.2006.11.005 CrossRefGoogle Scholar
  18. 18.
    S.M. Savić, O.S. Aleksić, P.M. Nikolić, D.T. Luković, Sci. Sinter. 38, 223 (2006). doi: 10.2298/SOS0603223S CrossRefGoogle Scholar
  19. 19.
    A. Rougier, S. Soiron, I. Haihal, L. Aymard, B. Taouk, J.-M. Tarascon, Powder Technol. 128, 139 (2002). doi: 10.1016/S0032-5910(02)00191-2 CrossRefGoogle Scholar
  20. 20.
    N.G. Galkin, D.L. Goroshko, A.V. Konchenko, E.S. Zakharova, S.T.S. Krivoshchapov, Semiconductors 34, 799 (2000). doi: 10.1134/1.1188076 CrossRefADSGoogle Scholar
  21. 21.
    T.S. Kayed, N. Calinli, E. Aksu, H. Koralay, A. Günen, I. Ercan, S. Aktürk, S. Cavdar, Cryst. Res. Technol. 39, 1063 (2004). doi: 10.1002/crat.200410291 CrossRefGoogle Scholar
  22. 22.
    H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003). doi: 10.1016/S0921-4534(02)01876-2 CrossRefADSGoogle Scholar
  23. 23.
    G. Ilonca, F. Beiusan, A.V. Pop, I. Matei, E. Macocain, T.R. Yang, Int. J. Mod. Phys. B 18, 3057 (2004). doi: 10.1142/S0217979204026275 CrossRefADSGoogle Scholar
  24. 24.
    C.S. Hsieh, K. Schröder, J. Appl. Phys. 79, 6522 (1996). doi: 10.1063/1.361932 CrossRefADSGoogle Scholar
  25. 25.
    T. Taniguchi, T. Yamazaki, K. Yamanaka, Y. Tabata, S. Kawarazaki, J. Magn. Magn. Mater. 310, 1526 (2007). doi: 10.1016/j.jmmm.2006.10.666 CrossRefADSGoogle Scholar
  26. 26.
    K-H. Seo, D.-H. Park, J.-H. Lee, J.-J. Kim, Solid State Ionics 177, 601 (2006). doi: 10.1016/j.ssi.2005.12.020 CrossRefGoogle Scholar
  27. 27.
    J.D. Gething, A.J. Matthews, A. Usher, M.E. Portnoi, K.V. Kavokin, Int. J. Mod. Phys. B 18, 3537 (2004). doi: 10.1142/S0217979204026962 CrossRefADSGoogle Scholar
  28. 28.
    E. Fradkin, S.A. Kivelson, Phys. Rev. B 59, 8065 (1999). doi: 10.1103/PhysRevB.59.8065 CrossRefADSGoogle Scholar
  29. 29.
    K. Park, D.Y. Bang, J. Mater. Sci.: Mater. Electron. 14, 81 (2003)CrossRefGoogle Scholar
  30. 30.
    Y. Abe, T. Meguro, T. Yokoyama, T. Morita, J. Tatami, K. Komeya, J. Ceram. Proc. Res. 4, 140 (2003)Google Scholar
  31. 31.
    P.J. Freud, Phys. Rev. Lett. 29, 1156 (1972). doi: 10.1103/PhysRevLett.29.1156 CrossRefADSGoogle Scholar
  32. 32.
    J. Töpfer, A. Feltz, P. Dordor, J.P. Doumerc, Mater. Res. Bull. 29, 225 (1994). doi: 10.1016/0025-5408(94)90017-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. M. Savić
    • 1
    Email author
  • G. M. Stojanović
    • 2
  • M. V. Nikolić
    • 3
  • O. S. Aleksić
    • 3
  • D. T. Luković Golić
    • 1
  • P. M. Nikolić
    • 1
  1. 1.Institute of Technical Sciences of SASABelgradeSerbia
  2. 2.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.Institute for Multidisciplinary ResearchBelgradeSerbia

Personalised recommendations