Influence of defects in opal photonic crystals on the optical transmission imaged by near-field scanning optical microscopy

  • K. Bittkau
  • R. Carius
  • A. Bielawny
  • R. B. Wehrspohn


The electric field intensity above the surface of opal photonic crystals (PCs) and its alteration due to ‘crystallographic’ defects is investigated by using near-field scanning optical microscopy (NSOM). The photonic crystals are developed by dip coating in a liquid solution with PMMA opals. Highly regular hexagonal planes with lattice constants of about 260 nm grow on the glass substrate. During the drying process several crack lines are formed that correspond to defects in the crystal structure. The transmitted light intensity at wavelengths inside and outside of the stop band of the PC is studied with NSOM using a tapered fiber tip scanning in all three dimensions. By this technique, a 3D image of the electric field intensity can be measured with a resolution better than 100 nm. The results show that the local optical field distribution is strongly dominated by the defect states in all directions in space over a length scale of several μm. Above the crack lines, the intensity of light is strongly reduced. Beams of light are observed emerging from the edges of the crack lines and propagate in air with heights of more than 3 μm. In between two different crack lines, periodic repetitions of the beams are observed. These results are interpreted as light diffraction on a microscopic scale.


Photonic Crystal Stop Band Crack Line Photonic Crystal Structure Transmitted Light Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the partial financial support of this work through the Deutsche Forschungsgemeinschaft (PAK88). We further acknowledge Paul Miclea for the SEM measurement.


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  3. 3.
    A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996)CrossRefGoogle Scholar
  4. 4.
    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)CrossRefGoogle Scholar
  5. 5.
    S.-Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J. D. Joannopoulos, Science 282, 274 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Bielawny, P.-T. Miclea, A.v. Rhein, R.B. Wehrspohn, S. van Riesen, S. Glunz, Proc. SPIE 6197, 619704 (2006)CrossRefGoogle Scholar
  7. 7.
    E. Yablonovitch, J. Opt. Soc. Am. A 72, 899 (1982)CrossRefGoogle Scholar
  8. 8.
    M.A. Green, Prog. Photovolt.: Res. Appl. 10, 235 (2002)CrossRefGoogle Scholar
  9. 9.
    P. Sheng, A.N. Bloch, R.S. Stepleman, Appl. Phys. Lett. 43, 579 (1983)CrossRefGoogle Scholar
  10. 10.
    C. Haase, H. Stiebig, Prog. Photovolt.: Res. Appl. 14, 629 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Appl. Phys. Lett. 89, 111111 (2006)CrossRefGoogle Scholar
  12. 12.
    E.B. McDaniel, J.W.P. Hsu, L.S. Goldner, R.J. Tonucci, E.L. Shirley, G.W. Bryant, Phys. Rev. B 55, 10878 (1997)CrossRefGoogle Scholar
  13. 13.
    S. Fan, I. Appelbaum, J.D. Joannopoulos, Appl. Phys. Lett. 75, 3461 (1999)CrossRefGoogle Scholar
  14. 14.
    S.I. Bozhevolnyi, V.S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, Opt. Commun. 212, 51 (2002)CrossRefGoogle Scholar
  15. 15.
    E. Flück, N.F. van Hulst, W.L. Vos, L. Kuipers, Phys. Rev. E 68, 015601 (2003)CrossRefGoogle Scholar
  16. 16.
    P. Kramper, M. Kafesaki, C.M. Soukoulis, A. Birner, F. Müller, U. Gösele, R.B. Wehrspohn, J. Mlynek, V. Sandoghdar, Opt. Lett. 29, 174 (2004)CrossRefGoogle Scholar
  17. 17.
    E. Palacios-Lidón, B.H. Juárez, E. Castillo-Martínez, C. López, J. Appl. Phys. 97, 063502, (2005)CrossRefGoogle Scholar
  18. 18.
    K. Bittkau, R. Carius, C. Lienau, Phys. Rev. B 76, 035330 (2007)CrossRefGoogle Scholar
  19. 19.
    P.-K. Wei, H.-L. Chou, W.-L. Chang, J. Opt. Soc. Am. B 20, 1503 (2003)CrossRefGoogle Scholar
  20. 20.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martín-Moreno, F.J. García-Vidal, T.W. Ebbesen, Science 297, 820 (2002). L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Degiron, T.W. Ebbesen, Phys. Rev. Lett. 90, 167401 (2003)Google Scholar
  21. 21.
    P. Kramper, M. Agio, C.M. Soukoulis, A. Birner, F. Müller, R.B. Wehrspohn, U. Gösele, V. Sandoghdar, Phys. Rev. Lett. 92, 113903 (2004). E. Moreno, F. J. García-Vidal, L. Martín-Moreno, Phys. Rev. B 69, 121402 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Bittkau
    • 1
  • R. Carius
    • 1
  • A. Bielawny
    • 2
  • R. B. Wehrspohn
    • 2
  1. 1.Institut für Energieforschung, PhotovoltaikJülichGermany
  2. 2.Institut für Physik, Mikrostrukturbasiertes MaterialdesignMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations