Advertisement

Space-charge-limited conduction in ethyl–hexyl substituted polyfluorene

  • S. Guha
  • M. Arif
  • S. Gangopadhyay
  • U. Scherf
Article

Abstract

Ethyl–hexyl substituted polyfluorene (PF2/6) is a model blue-emitting polymeric system where the space-charge-limited conduction model within discrete single-level shallow traps can be applied to describe charge transport. Thermal cycling the PF2/6 film to a crystalline phase prevents creation of additional trap states, which is seen in the as-is polymer at higher voltages. These results shed new light on the mechanism of charge transport in polymers. Although PF2/6 has a high degree of interchain disorder, the as-is polymer shows regions of ordering that impacts charge transport through the polymer. Current–voltage characteristics as a function of the polymer thickness reveal the origin of the trap states.

Keywords

Charge Transport Trap State Polymer Thickness Bulk Trap High Luminescence Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the support of this work through the National Science Foundation under Grant No. ECCS-0523656. We thank Prof. Kartik Ghosh of Missouri State University for providing us with the ITO substrates.

References

  1. 1.
    M. Grell, D.D.C. Bradley, G. Ungar, J. Hill, K.S. Whitehead, Macromolecules 32, 5810 (1999)CrossRefADSGoogle Scholar
  2. 2.
    B. Tanto, S. Guha, C.M. Martin, U. Scherf, M.J. Winokur, Macromolecules 37, 9438 (2004)CrossRefADSGoogle Scholar
  3. 3.
    M.N. Bussac, L. Zuppiroli, Phys. Rev. B 55, 15587 (1997)CrossRefADSGoogle Scholar
  4. 4.
    R. Schmechel, H. von Seggern, Phys. Status Solidi A 201, 1215 (2004)CrossRefADSGoogle Scholar
  5. 5.
    M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, 1999)Google Scholar
  6. 6.
    A. Kadashchuk, R. Schmechel, H. von Seggern, U. Scherf, A. Vakhnin, J. Appl. Phys. 98, 024101 (2005)CrossRefADSGoogle Scholar
  7. 7.
    M. Arif, M. Yun, S. Gangopadhyay, K. Ghosh, L. Fadiga, F. Galbrecht, U. Scherf, S. Guha, Phys. Rev. B 75, 195202 (2007)CrossRefADSGoogle Scholar
  8. 8.
    M.A. Lampert, P. Mark, Current Injection in Solids (Academic Press, New York, 1970)Google Scholar
  9. 9.
    S. Nespurek, J. Swarakowski, J. Appl. Phys. 51, 2098 (1980)CrossRefADSGoogle Scholar
  10. 10.
    U. Scherf, E.J.W. List, Adv. Mater (Weinheim. Ger.). 14, 477 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Makromolekulare ChemieBergische Universität WuppertalWuppertalGermany

Personalised recommendations