Influence of thickness on nanomechanical behavior of Black Diamond™ low dielectric thin films for interconnect and packaging applications

  • V. N. Sekhar
  • T. C. Chai
  • S. Balakumar
  • Lu Shen
  • S. K. Sinha
  • A. A. O. Tay
  • Seung Wook Yoon
Article

Abstract

In the present study, we have investigated the thickness dependence of mechanical properties of the Black Diamond™ (SiOC:H, BD, Low-k) films, which are of great interest in current Cu/low-k Back End of the Line (BEOL) interconnect/packaging technologies. For this investigation the BD thin films of six different thicknesses 100, 300, 500, 700, 1,000 and 1,200 nm were deposited on the 8″ Si wafer by using plasma enhanced chemical vapor deposition (PECVD) technique. Nanoindentation and nanoscratch tests of the BD films were performed by using the Nano Indenter® XP (MTS Corp. USA). In nanoindentation testing of the BD films, significant differences in the elastic modulus of the BD films were observed. In nanoscratch testing, it is found that the critical load (Lc) and scratch width increases as the thickness of the film increases. Cross-sectional analysis of residual nanoindentation impressions was carried out using atomic force microscopy (AFM) to study the deformation behavior. The nanoindentation and nanoscratch responses of the BD thin films of six different thicknesses are different and they are expected mainly due to the molecular reorganization in thin/ultra thin films.

References

  1. 1.
    J.D. Plummer, M. Deal, P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, NJ, USA, 2000)Google Scholar
  2. 2.
    S. Wolf, Multilevel interconnects for ULSI, in Silicon Processing for the VLSI Era, vol. 4, Chap.12, Deep Submicron Technology (Lattice press, Sunset beach, CA, 2002), pp. 573Google Scholar
  3. 3.
    International Technology Roadmap for Semiconductors, 2002 Update (SIA San Jose, CA, 2003), http://www.public.itrs.net
  4. 4.
    The International Technology Roadmap for Semiconductors, 2000 Update (Semiconductor Industry Association, San Jose, CA, 2000)Google Scholar
  5. 5.
    T. Ohba, Fujitsu Sci. Tech. J., 38(1), 13 (2002)Google Scholar
  6. 6.
    N. Misawa, T. Ohba H. Yagi, MRS Bull. XIX(8), 63 (1994)Google Scholar
  7. 7.
    A.A. Volinsky, M.B. Palacio, W.W. Gerberich, Mat. Res. Soc. Symp. Proc. 750, Y9.9 (2003)Google Scholar
  8. 8.
    W.T. Tseng, C.W. Liu, B.T. Dai, C.F. Yeh, Thin Solid Films 290, 458 (1996)CrossRefADSGoogle Scholar
  9. 9.
    T.P. Weihs S. Hong, J.C. Bravman, W.D. Nix, J. Mater. Res. 3(5), 931 (1998)CrossRefADSGoogle Scholar
  10. 10.
    S.P. Baker, W. D. Nix, J. Mater. Res. 9(12), 3131 (1994)CrossRefADSGoogle Scholar
  11. 11.
    D.T. Read, J.W. Dally, J. Mater. Res. 8(7), 1542 (1993)CrossRefADSGoogle Scholar
  12. 12.
    T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, E. Andideh, IITC Proc. (2001) p.257Google Scholar
  13. 13.
    X. Li, B. Bhusan, Mater. Charact. 48, 11 (2002)CrossRefGoogle Scholar
  14. 14.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7(6), 1564 (1992)CrossRefADSGoogle Scholar
  15. 15.
    I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)MATHGoogle Scholar
  17. 17.
    B.R. Lawn, T.R. Howes, J. Mater. Sci. 16, 2745 (1981)CrossRefGoogle Scholar
  18. 18.
    D. S. Campbell, in Handbook of Thin Film Technology, ed. by L. I. Maissel and R. Glang (McGraw-Hill, New York), pp. 6B-1Google Scholar
  19. 19.
    D.S. Campbell, Handbook of Thin Film Technology, Chap. 12 (McGraw-Hill, New York, 1970)Google Scholar
  20. 20.
    B. Bhusan, X. Li, Int. Mater. Rev. 48(3), 125 (2003)CrossRefGoogle Scholar
  21. 21.
    P.A. Steinmann, Y. Tardy, H.E. Hintermann, Thin Solid Films 154, 333 (1987)CrossRefADSGoogle Scholar
  22. 22.
    S.J. Bull, E.G. Berasetegui, Tribol. Int. 39, 99 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Chen, L. Liu, T. Wang, Surface Coat. Technol. 191, 25 (2005)CrossRefGoogle Scholar
  24. 24.
    R.J. Nay, O.L. Warren, D. Yang, T.J. Wyrobek, Microelectr. Eng. 75, 103 (2004)Google Scholar
  25. 25.
    J.B. Vella, A.A. Volinsky, I.S. Adhihetty, W.W. Gerberich, Mat. Res. Soc. Symp. Proc. 716, B12.12 (2002)Google Scholar
  26. 26.
    L. Wang, M. Ganor, S.I. Rokhlin, J. Mater. Res. 20(8), 2080 (2005)CrossRefADSGoogle Scholar
  27. 27.
    A.K. Sikder, I.M. Irfan, A. Kumar, J.M. Anthony, J. Electr. Mater. 30(12), 1527 (2001)Google Scholar
  28. 28.
    Y. Toivola, A. Stein, R.F. Cook, J. Mater. Res. 19, 260 (2004)CrossRefADSGoogle Scholar
  29. 29.
    W. Tang, L. Shen, K. Xu, Thin Solid Films 485, 72 (2005)CrossRefADSGoogle Scholar
  30. 30.
    K. Zeng, Z.-K. Chen, L. Shen, B. Liu, Thin Solid Films 477, 111 (2005)CrossRefADSGoogle Scholar
  31. 31.
    J. Wang, F.G. Shi, T.G. Nieh, B. Zhao, M.R. Brongo, S. Qu, T. Rosenmayer, Scripta Mater. 42, 687 (2000)CrossRefGoogle Scholar
  32. 32.
    N. Tayebi, A.A. Polycarpou, T.F. Cony, J. Mater. Res. 19(6) 1791 (2004)Google Scholar
  33. 33.
    J. Qi, C.Y. Chan, I. Bello, C.S. Lee, S.T. Lee, J.B. Luo, Z. Wen, Surface Coat. Technol. 145, 38 (2001)CrossRefGoogle Scholar
  34. 34.
    J. Ye, N. Koijima, K. Ueoka, J. Shimanuki, T. Nasuno, S. Ogawa, J. Appl. Phy. 95(7), 3704 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. N. Sekhar
    • 1
  • T. C. Chai
    • 1
  • S. Balakumar
    • 1
  • Lu Shen
    • 2
  • S. K. Sinha
    • 3
  • A. A. O. Tay
    • 3
  • Seung Wook Yoon
    • 1
  1. 1.Institute of MicroelectronicsSingaporeSingapore
  2. 2.Institute of Materials Research and EngineeringSingaporeSingapore
  3. 3.Nano/Microsystems Integration Lab, Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations