Identification of degradation mechanisms in high-power laser bars using by-emitter degradation studies

  • Stephen Bull
  • Jens W. Tomm
  • Eric C. Larkins


An investigation into the degradation of an 808 nm AlGaAs/GaAs compressively strained high-power laser bar is performed using a range of experimental techniques that focus on understanding the performance of the individual emitters that make up the laser bar—a so-called by-emitter analysis. We find that thermally induced current runaway, beginning in the edge emitters, is an important factor in the degradation of this bar and its eventual failure. Facet temperature measurements reveal that temperature distributions where the emitters are hotter at the bar edges as compared to those in the bar centre can occur in aged laser bars. This is in contrast to the facet temperature distributions observed in new devices and also in measurements of the bulk temperature.


Bulk Temperature Edge Emitter Single Emitter Individual Emitter Current Competition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from the European Commission through the IST projects POWERPACK (IST-2000-29447), WWW.BRIGHT.EU (IST-511722) and WWW.BRIGHTER.EU (IST-035266). We also wish to thank the project partners at the Fraunhofer ILT for performing the aging tests.


  1. 1.
    H. Li, T. Towe, I. Chyr, D. Brown, T. Nguyen, F. Reinhardt, X. Jin, R. Srinivasan, M. Berube, T. Truchan, R. Bullock, J. Harrison, Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar. IEEE Photon. Technol. Lett. 19, 960 (2007)CrossRefGoogle Scholar
  2. 2.
    P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, M. Bougher, J. Patterson, S. Das, M. Grimshaw, J. Farmer, M. Devito, R. Martinsen, Diode laser efficiency increases enable >400-W peak power from 1-cm bars and show clear path to peak powers in excess of 1-kW. Proc. SPIE 6104, 610409 (2006)CrossRefGoogle Scholar
  3. 3.
    N. Lichtenstein, Y. Manz, P. Mauron, A. Fily, B. Schmidt, J. Müller, S. Arlt, S. Weiß, A. Thies, J. Troger, C. Harder, 325 Watt from 1-cm wide 9xx laser bars for DPSSL- and FL-applications. Proc. SPIE 5711, 1 (2005)CrossRefGoogle Scholar
  4. 4.
    H.X. Li, I. Chyr, X. Jin, F. Reinhardt, T. Towe, D. Brown, T. Nguyen, M. Berube, T. Truchan, D. Hu, R. Miller, R. Srinivasan, T. Crum, E. Wolak, R. Bullock, J. Mott, J. Harrison, >700 W continuous wave output power from a single laser diode bar. Electron. Lett. 43, 25 (2007)Google Scholar
  5. 5.
    R. Diehl (ed.), Topics in Applied Physics: High-Power Diode Lasers, Fundamentals, Technology. Applications, vol. 78 (Springer, Berlin, 2000)Google Scholar
  6. 6.
    M. Fukuda, Reliability and Degradation of Semiconductor Lasers and LEDs (Artech, Boston, 1991)Google Scholar
  7. 7.
    J.W. Tomm, J. Jimenez (eds.), Quantum-Well Laser Array Packaging (McGraw-Hill, New York, 2007)Google Scholar
  8. 8.
    R. Xia, E.C. Larkins, I. Harrison, S.R.A. Dods, A.V. Andrianov, J. Morgan, J.P. Landesman, The effect of mounting induced strain and defects on the properties of AlGaAs 808 nm laser diodes. Synthetic Metals 127, 255 (2002)CrossRefGoogle Scholar
  9. 9.
    R. Xia, E.C. Larkins, I. Harrison, S.R.A. Dods, A.V. Andrianov, J. Morgan, J.P. Landesman, Mounting-induced strain threshold for the degradation of high-power AlGaAs laser bars. IEEE Photon. Technol. Lett. 14, 893 (2002)CrossRefGoogle Scholar
  10. 10.
    J.W. Tomm, A. Gerhardt, T. Elsaesser, D. Lorenzen, P. Hennig, Simultaneous quantification of strain and defects in high-power diode laser devices. Appl. Phys. Lett. 81, 3269 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Bull, J.W. Tomm, M. Oudart, J. Nagle, C. Scholz, K. Boucke, I. Harrison, E.C. Larkins, By-emitter degradation analysis of high-power laser bars. J. Appl. Phys. 98, 063101 (2005)CrossRefGoogle Scholar
  12. 12.
    J.W. Tomm, R. Müller, A. Bärwolff, T. Elsaesser, D. Lorenzen, F.X. Daiminger, A. Gerhardt, J. Donecker, Direct spectroscopic measurement of mounting-induced strain in high power optoelectronic devices. Appl. Phys. Lett. 73, 3908 (1998)CrossRefGoogle Scholar
  13. 13.
    J.W. Tomm, A. Gerhardt, R. Müller, M.L. Biermann, J.P. Holland, D. Lorenzen, E. Kaulfersch, Quantitative strain analysis in AlGaAs-based devices. Appl. Phys. Lett. 82, 4193 (2003)CrossRefGoogle Scholar
  14. 14.
    R. Xia, A.V. Andrianov, S. Bull, I. Harrison, J.P. Landesman, E.C. Larkins, Micro-electroluminescence spectroscopy investigation of mounting-induced strain and defects on high-power GaAs/AlGaAs laser diodes. Opt. Quantum Electron. 35, 1099 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Todoroki, M. Sawai, K. Aiki, Temperature distribution along the striped active region in high-power GaAlAs visible lasers. J. Appl. Phys. 58, 1124 (1985)CrossRefGoogle Scholar
  16. 16.
    H. Brugger, P.W. Epperlein, Mapping of local temperatures on mirrors of GaAs/AlGaAs laser diodes. Appl. Phys. Lett. 56, 1049 (1990)CrossRefGoogle Scholar
  17. 17.
    T.J. Ochalski, D. Pierścińska, K. Pierściński, M. Bugajski, J.W. Tomm, T. Grunske, A. Kozlowska, Complementary thermoreflectance and micro-Raman analysis of facet temperatures of diode lasers. Appl. Phys. Lett. 89, 071104 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringUniversity of NottinghamNottinghamUK
  2. 2.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations