Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method

  • L. M. Fang
  • X. T. ZuEmail author
  • Z. J. Li
  • S. Zhu
  • C. M. Liu
  • L. M. Wang
  • F. Gao


Co-doped SnO2 nanoparticles were synthesized by a simple hydrothermal method, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectra (DRS) and Photoluminescence spectroscopy (PL). It is found that the SnO2 crystallites with the tetragonal rutile structure formed directly during the hydrothermal process without calcination. The Co-doped SnO2 nanoparticles were spheric and well-dispersed with narrow size distribution. The crystalline size of SnO2 decreased from 5.98 to 2.22 nm when the Co content increased from 0% to 20%. A considerable red shift in the absorbing band edge was observed with increasing of Co dopant.


SnO2 Diffuse Reflectance Spectrum Blue Emission SnO2 Nanoparticles Room Temperature Photoluminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported financially by the NSAF Joint Foundation of China (10376006) and by the Program for New Century Excellent Talents in University (NCET-04-0899) and by the Ph.D. Founding Support Program of Education Ministry of China (20050614013) and by Program for Innovative Research Team in UESTC.


  1. 1.
    A. Teeramongkonrasmee, M. Sriyudthsak, Sensor. Actuator B 66, 256 (2000)CrossRefGoogle Scholar
  2. 2.
    G. Ansari, D. Boroojerdian, S.R. Sainker, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Thin Solid Films 295, 271 (1997)CrossRefGoogle Scholar
  3. 3.
    Tomokatsu Hayakawa, Masayuki Nogami, Sci. Technol. Adv. Mater. 6, 66 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Ferrere, A. Zaban, B.A. Gsegg, J. Phys. Chem. B 101, 4490 (1997)CrossRefGoogle Scholar
  5. 5.
    V. Subramanian, K.I. Gnanasekar, B. Rambabu, Solid State Ionics 175, 181 (2004)CrossRefGoogle Scholar
  6. 6.
    S.R. Stampfl, Y. Chen, J.A. Dumesis, Ch. Niu, C.G. Hill, J. Catal. 105, 445 (1987)CrossRefGoogle Scholar
  7. 7.
    F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 51 (2003)CrossRefGoogle Scholar
  8. 8.
    R.D. Tarey, T.A. Raju, Thin Solid Films 128, 181 (1995)CrossRefGoogle Scholar
  9. 9.
    T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 27, L287 (1988)CrossRefGoogle Scholar
  10. 10.
    V. Schlosser, G. Wind, in Proceedings of the 8th EC Photovoltaic Solar Energy Conference, (Florence, Italy, 1998), p. 998Google Scholar
  11. 11.
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004)CrossRefGoogle Scholar
  12. 12.
    H. Elhouichet, L. Othman, A. Moadhen, M. Oueslati, J.A. Roger, Mater. Sci. Eng. B 5, 8 (2003)CrossRefGoogle Scholar
  13. 13.
    J. Del Castillo, V.D. Rodriguez, A.C. Yanes, J. Mendez-Ramos, Nanotechnology 16, S300 (2005)CrossRefGoogle Scholar
  14. 14.
    F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Inorg. Chem. Commun. 6, 882 (2003)CrossRefGoogle Scholar
  16. 16.
    H.Y. Jin, Y.H. Xu, G.S. Pang, W.J. Dong, Mater. Chem. Phys. 85, 58–62 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Phys. Rev. B 72, 075203 (2005)CrossRefGoogle Scholar
  18. 18.
    G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet, J. Morante. Thin Solid Films 467, 20–214 (2004)Google Scholar
  19. 19.
    L.C. Liu, L.M. Fang, X.T. Zu, W.L Zhou, Chin. Phys. 16, 95–99 (2007)CrossRefGoogle Scholar
  20. 20.
    G. Kortum, Reflectance Spectroscopy (Springer-Verlag, New York, 1969)Google Scholar
  21. 21.
    Y. Kayanuma, Solid State Commun. 59, 405 (1986)CrossRefGoogle Scholar
  22. 22.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1988)CrossRefGoogle Scholar
  23. 23.
    B.L. Yu, C.S. Zhu, F.X. Gan, Opt. Mater. 7, 15 (1997)CrossRefGoogle Scholar
  24. 24.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wang, J. Alloys Compd. (in press)Google Scholar
  25. 25.
    Z.J. Li, B. Hou, Y. Xu, D. Wu, Y.H. Sun, J. Mater. Sci. 40, 3939 (2005)CrossRefGoogle Scholar
  26. 26.
    C. Wang, D.W. Bahnemann, J.K. Dohrmann, Chem. Commun. 1539 (2000)Google Scholar
  27. 27.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 3669 (1994)CrossRefGoogle Scholar
  28. 28.
    V.A.L. Roy, A.B. Djurisic, H. Liu, X.X. Zhang, Y.H. Leung, M.H. Xie, J. Gao, H.F. Lui, C. Surya, Appl. Phys. Lett. 84, 756 (2004)CrossRefGoogle Scholar
  29. 29.
    T.W. Kim, D.U. Lee, Y.S. Yoon, J. Appl. Phys. 88, 3759 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. M. Fang
    • 1
  • X. T. Zu
    • 1
    • 2
    Email author
  • Z. J. Li
    • 1
  • S. Zhu
    • 3
    • 4
  • C. M. Liu
    • 1
  • L. M. Wang
    • 3
    • 4
  • F. Gao
    • 5
  1. 1.Department of Applied PhysicsUniversity of Electronic Science and Technology of ChinaChengduP. R. China
  2. 2.International Center for Material PhysicsChinese Academy of SciencesShengyangP. R. China
  3. 3.Department of Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA
  4. 4.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  5. 5.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations