Advertisement

Improvement of electrical properties of V2O5 modified ZnO ceramics by Mn-doping for varistor applications

  • Choon-Woo NahmEmail author
Article

Abstract

The dependence of microstructure, electrical properties, dielectric characteristics, and stability of conduction characteristics in ternary ZnO–V2O5–Mn3O4 system on the amount of Mn3O4 present in them was investigated. For all compositions studied, the microstructure of the ternary ZnO–V2O5–Mn3O4 system consisted of mainly ZnO grains and Zn3(VO4)2 as a secondary phase. The incorporation of Mn3O4 to the binary ZnO–V2O5 system was found to restrict abnormal grain growth of ZnO. The breakdown field in the electric field–current density characteristics increased from 175 to 4,635 V/cm with the increase of Mn3O4 amount. The ternary system doped with 0.5 mol% Mn3O4 exhibited the highest non-ohmic properties, in which the non-ohmic coefficient is 22.4 and the leakage current density is 0.22 mA/cm2. Furthermore, the sample doped with 0.5 mol% Mn3O4 was found to possess 0.43 × 1018/cm3 in donor density and 2.66 eV in barrier height.

Keywords

Electroceramics Vanadium Microstructure Electrical properties Varistors 

References

  1. 1.
    L.M. Levinson, H.R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  4. 4.
    C.-W. Nahm, J. Mater. Sci. Lett. 21, 201 (2002)CrossRefGoogle Scholar
  5. 5.
    J.-K. Tsai, T.-B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  6. 6.
    J.-K. Tsai, T.-B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  7. 7.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  8. 8.
    H.-H. Hng, K.M. Knowles, J. Eur. Ceram. Soc. 19, 721 (1999)CrossRefGoogle Scholar
  9. 9.
    H.-H. Hng, L. Halim, Mater. Lett. 57, 1411 (2003)CrossRefGoogle Scholar
  10. 10.
    G.S. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson, J. Appl. Phys. 57, 5512 (1985)CrossRefGoogle Scholar
  11. 11.
    F. Greuter, G. Latter, M. Rossineli, F. Stucki, in Advances in Varistor Technology, vol. 3, ed. by L.M. Levinson (Am. Ceram. Soc. Westerville, OH, 1989), p. 31Google Scholar
  12. 12.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  13. 13.
    M. Mukae, K. Tsuda, I. Nagasawa, J. Appl. Phys. 50, 4475 (1979)CrossRefGoogle Scholar
  14. 14.
    K. Mukae, K. Tsuda, I. Nagasaya, Jpn. J. Appl. Phys. 16, 1361 (1977)CrossRefGoogle Scholar
  15. 15.
    A. Iga, M. Matsuoka, T. Masuyama, Jpn. J. Appl. Phys. 15, 1847 (1976)CrossRefGoogle Scholar
  16. 16.
    J. Fan, R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994)CrossRefGoogle Scholar
  17. 17.
    M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971)CrossRefGoogle Scholar
  18. 18.
    M.F. Yan, A. H. Heuer in Additives and Interfaces in Electronic Ceramics (Am. Ceram. Soc. Columbus, OH, 1983), p. 80Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations