EXAFS investigation of iron local environment in metal-doped titania photocatalysts prepared by hydrothermal and high-energy ball milling routes

  • F. Vasiliu
  • L. Diamandescu
  • D. Macovei
  • C. M. Teodorescu
  • R. Nicula


Iron local environment was investigated by EXAFS in Fe- and (Fe, Eu)-doped TiO2 photocatalysts, prepared by hydrothermal and high-energy ball milling (HEBM) routes. In the case of the hydrothermal samples, the substitution of Ti4+ by Fe3+ ions was evidenced. For the samples prepared by HEBM, the iron environment corresponds to mixed metallic and oxidized (FeO, α-Fe2O3) configurations, without a clear evidence of iron incorporation into the TiO2 lattice. This could be related to the catalyst contamination by iron microparticles detached from the balls during milling process.


  1. 1.
    S. Matsuo, N. Sakaguchi, K. Yamada, T. Matsuo, H. Wakita, Appl. Surf. Sci. 228, 233 (2004)CrossRefADSGoogle Scholar
  2. 2.
    V.V. Kriventsov, D.I. Kochubey, G. Collon, M.C. Hidalgo, J.A. Navio, M.V. Tsodikov, Yu.V. Maksimov, Phys. Scr. T115, 736 (2005)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, M. Zhou, L. Lei, Catal. Comm. 7, 427 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Yoshida, T. Tanaka, S. Yoshida, S. Hikita, T. Baba, T. Hinode, Y. Ono, Appl. Surf. Sci. 156, 65 (2000)CrossRefADSGoogle Scholar
  5. 5.
    W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, S. Ismat Shah, Phys. Rev. B 72, 155315 (2005)CrossRefADSGoogle Scholar
  6. 6.
    S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B 52, 2995 (1995)CrossRefADSGoogle Scholar
  7. 7.
    M. Iu. Antipin, V.G. Tsirelson, M.P. Flugge, R.G. Gerr, Iu.T. Struchkov, R.P. Ozerov, Dokl. Akad. Nauk SSSR 281, 854 (1985)Google Scholar
  8. 8.
    C.J. Howard, T.M. Sabine, F. Dickson, Acta Cryst. B47, 462 (1991)Google Scholar
  9. 9.
    B.A. Wechsler, C.T. Prewitt, Am. Mineral. 69, 176 (1984)Google Scholar
  10. 10.
    A.W. Glenn, Rev. Mineral. 25, 38 (1991)Google Scholar
  11. 11.
    S. Zhu, T. Shi, W. Liu, S. Wei, Y. Xie, C. Fan, Y. Li, Physica B 396, 177 (2007)CrossRefADSGoogle Scholar
  12. 12.
    C.E. Rodriguez Torres, S. Duhalde, A.F. Cabrera, F.H. Sanchez, C. Chilliote, M.F. Vignolo, Physica B 384, 341 (2006)CrossRefADSGoogle Scholar
  13. 13.
    H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, M. Anpo, Nucl. Instrum. Meth. Phys. Res. B 206, 898 (2003)CrossRefADSGoogle Scholar
  14. 14.
    R.D. Shannon, Acta Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
  15. 15.
    L. Diamandescu, F. Vasiliu, A.M. Vlaicu, C.M. Teodorescu, D.Tarabasanu-Mihaila, M. Feder, in Proceedings of the 10th International Conference of the European Ceramic Society (ECERS), Berlin (2007), in pressGoogle Scholar
  16. 16.
    R.B. Greegor, F.W. Lytle, J. Catal. 63, 476 (1980)CrossRefGoogle Scholar
  17. 17.
    J.W.M. Jacobs, F.W.H. Kampers, J.M.G. Rikken, C.W.T. Bulle-Lieuwma, D.C. Koningsberger, J. Electrochem. Soc. 136, 2914 (1989)CrossRefGoogle Scholar
  18. 18.
    L.I. Balcells, C. Frontera, F. Sandiumenge, A. Roig, B. Martínez, Appl. Phys. Lett. 89, 122501 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. Vasiliu
    • 1
  • L. Diamandescu
    • 1
  • D. Macovei
    • 1
  • C. M. Teodorescu
    • 1
  • R. Nicula
    • 2
  1. 1.National Institute of Materials PhysicsBucharest, MagureleRomania
  2. 2.Department of New MaterialsUniversity of RostockRostockGermany

Personalised recommendations