High-yield fabrication of t-Se nanowires via hydrothermal method and their photoconductivity

  • Liang Cheng
  • Mingwang Shao
  • Dayan Chen
  • Xianwen Wei
  • Fengxia Wang
  • Jun Hua


Large-scale fabrication of high-purity and uniform trigonal selenium (t-Se) nanowires was obtained by reducing SeO2 with glucose at 160 °C for 24 h. The resulting t-Se nanowires were characterized and confirmed by means of an X-ray diffractometer, scanning electron microscope, transmission electron microscope and energy dispersive X-ray spectroscope. The results indicated that the high yield uniform t-Se nanowires have high degree of crystallinity. The selected area electron diffraction pattern and high-resolution transmission electron microscopy image demonstrate perfect crystallinity with the growth direction of [001]. Owning to quantum size effect, a significant blue shift could be identified in the absorbance spectroscopy of as-prepared products. The photoconductivity of t-Se nanowires with light was also investigated and reached maximum at the wavelength of 575 nm, which might be useful in the fabrication of micro-devices or photo-switches. Contrast experiments showed that surfactant Tween-40 played a crucial role in the formation of nanowires.



Financial support from the National Natural Science Foundation of China (20571001), the Education Department (No. 2006KJ006TD) of Anhui Province and Anhui Provincial Natural Science Foundation (070414185) are appreciated.


  1. 1.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Nath, A. Choudhury, A. Kundu, C.N.R. Rao, Adv. Mater. 15, 2098 (2003)CrossRefGoogle Scholar
  3. 3.
    B.C. Cheng, Z.G. Wang, Adv. Funct. Mater. 15, 1883 (2005)CrossRefGoogle Scholar
  4. 4.
    X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)CrossRefGoogle Scholar
  5. 5.
    A.L. Pan, H. Yang, R.B. Liu, R.C. Yu, B.S. Zou, Z.L. Wang, J. Am. Chem. Soc. 127, 15692 (2005)CrossRefGoogle Scholar
  6. 6.
    M.W. Shao, H. Hu, M. Li, H.Z. Ban, M.Y. Wang, J. Jiang, Chem. Commun. 8, 793 (2007)CrossRefGoogle Scholar
  7. 7.
    L.I. Berger, Semiconductor Materials. (CRC Press, Boca Raton, 1997), pp. 86–88Google Scholar
  8. 8.
    J.A. Johnson, M.L. Saboungi, P. Thiyagarajan, R. Csencsits, D. Meisel, J. Phys. Chem. B 103, 59 (1999)CrossRefGoogle Scholar
  9. 9.
    S.O. Kasap, J.A. Rowlands, J. Mater. Sci.-Mater. El. 11, 179 (2000)CrossRefGoogle Scholar
  10. 10.
    H.T. Li, P.J. Rerensburger, J. Appl. Phys. 34, 1730 (1963)CrossRefGoogle Scholar
  11. 11.
    N.N. Greenwood, A. Eamshaw, Chemistry of the Elements, 2nd edn. (Oxford, Pergamon, 1997), Chap. 16Google Scholar
  12. 12.
    J.P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng, Y.D. Li, Inorg. Chem. 45, 4922 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.C. Li, H.Z. Zhong, R. Li, Y. Zhou, C.H. Yang, Y.F. Li, Adv. Funct. Mater. 16, 1705 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Gates, B. Mayers, B. Cattle, Y.N. Xia, Adv. Funct. Mater. 12, 219 (2002)CrossRefGoogle Scholar
  15. 15.
    S.L. Xiong, B.J. Xi, W.Z. Wang, C.M. Wang, L.F. Fei, H.Y. Zhou, Y.T. Qian, Cryst. Growth Des. 7, 1711 (2006)CrossRefGoogle Scholar
  16. 16.
    Q.Y. Lu, F. Gao, S. Komarneni, Chem. Mater. 18, 159 (2006)CrossRefGoogle Scholar
  17. 17.
    L. Ren, H.Z. Zhang, P.H. Tan, Y.F. Chen, Z.S. Zhang, Y.Q. Chang, J. Xu, F.H. Yang, D.P. Yu, J. Phys. Chem. B 108, 4627 (2004)CrossRefGoogle Scholar
  18. 18.
    X.B. Cao, Y. Xie, S.Y. Zhang, F.Q. Li, Adv. Mater. 16, 649 (2004)CrossRefGoogle Scholar
  19. 19.
    Y.R. Ma, L.M. Qian, W. Shen, M.J. Ma, Langmuir 21, 6161 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Mort, Phys. Rev. Lett. 18, 540 (1967)CrossRefGoogle Scholar
  21. 21.
    H. Mell, J. Stuke, Phys. Lett. 20, 222 (1966)CrossRefGoogle Scholar
  22. 22.
    C.S. Olsen, J.W. Beeman, K.M. Itoh, J. Farmer, V.I. Ozhogin, E.E. Haller, Solid State Commun. 108, 895 (1998)CrossRefGoogle Scholar
  23. 23.
    J.I. Kroschwitz, Encyclopedia of Chemical Technology, 4th edn. vol. 9 (John Wiley & Sons, New York, 1997), pp. 245Google Scholar
  24. 24.
    P. Liu, Y.R. Ma, W.W. Cai, Z.Z. Wang, J. Wang, L.M. Qi, D.M. Chen, Nanotechnology 18, 205704 (2007)CrossRefGoogle Scholar
  25. 25.
    C.H. An, K.B. Tang, X.M. Liu, Y.T. Qian, Eur. J. Inorg. Chem. 17, 3250 (2003)CrossRefGoogle Scholar
  26. 26.
    M.H. Chen, L. Gao, Chem. Phys. Lett. 417, 132 (2006)CrossRefGoogle Scholar
  27. 27.
    Q. Li, W.W. Yam, Chem. Commun. 9, 1006 (2006)CrossRefGoogle Scholar
  28. 28.
    Q. Xie, Z. Dai, W.W. Huang, W. Zhang, D.K. Ma, X.K. Hu, Y.T. Qian, Cryst. Growth Des. 6, 1514 (2006)CrossRefGoogle Scholar
  29. 29.
    V.N. Bogomolov, S.V. Kholodkevich, S.G. Romanov, L.S. Agroskin, Solid State Commun. 47, 181 (1983)CrossRefGoogle Scholar
  30. 30.
    G.B. Abdullayev, N.Z. Dvhzlilov, G.M. Aliyev, Phys. Lett. 23, 217 (1966)CrossRefGoogle Scholar
  31. 31.
    Z. Fan, P.C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.H. Lin, H.P. Lee, Appl. Phys. Lett. 85, 6128 (2004)CrossRefGoogle Scholar
  32. 32.
    D.P. Amalnnerkar, Mater. Chem. Phys. 60, 1 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liang Cheng
    • 1
  • Mingwang Shao
    • 1
  • Dayan Chen
    • 1
  • Xianwen Wei
    • 1
  • Fengxia Wang
    • 1
  • Jun Hua
    • 1
  1. 1.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuP.R. China

Personalised recommendations